This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161755 Number of reduced words of length n in the Weyl group B_10. 22
 1, 10, 54, 210, 659, 1772, 4235, 9218, 18590, 35178, 63064, 107910, 177297, 281060, 431598, 644136, 936915, 1331286, 1851685, 2525468, 3382588, 4455100, 5776486, 7380800, 9301642, 11570980, 14217849, 17266966, 20737309, 24640716, 28980565 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Computed with MAGMA using commands similar to those used to compute A161409. REFERENCES J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under PoincarĂ© polynomial. N. Bourbaki, Groupes et algĂ¨bres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.) LINKS G. C. Greubel, Table of n, a(n) for n = 0..100 FORMULA G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084. MAPLE seq(coeff(series(mul((1-x^(2*k))/(1-x), k=1..10), x, 101), x, n), n = 0 .. 100); # Muniru A Asiru, Oct 25 2018 MATHEMATICA CoefficientList[Series[(1 - x^2) (1 - x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) (1 - x^14) (1 - x^16) (1 - x^18) (1 - x^20) / (1 - x)^10, {x, 0, 100}], x] (* Vincenzo Librandi, Aug 22 2016 *) PROG (PARI) t='t+O('t^40); Vec(prod(k=1, 10, 1-t^(2*k))/(1-t)^10) \\ G. C. Greubel, Oct 25 2018 (MAGMA) m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..10]])/(1-t)^10)); // G. C. Greubel, Oct 25 2018 CROSSREFS The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175. Sequence in context: A292058 A152762 A161458 * A053347 A267172 A266764 Adjacent sequences:  A161752 A161753 A161754 * A161756 A161757 A161758 KEYWORD nonn,easy,fini,full AUTHOR John Cannon and N. J. A. Sloane, Nov 30 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 20:04 EDT 2019. Contains 328037 sequences. (Running on oeis4.)