login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161731 Expansion of (1-3*x)/(1-8*x+14*x^2). 6
1, 5, 26, 138, 740, 3988, 21544, 116520, 630544, 3413072, 18476960, 100032672, 541583936, 2932214080, 15875537536, 85953303168, 465368899840, 2519604954368, 13641675037184, 73858930936320, 399887996969984 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Fourth binomial transform of A016116.

Inverse binomial transform of A161734. Binomial transform of A086351. [From R. J. Mathar, Jun 18 2009]

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index to sequences with linear recurrences with constant coefficients, signature (8,-14).

FORMULA

a(n) = ((2+sqrt(2))*(4+sqrt(2))^n+(2-sqrt(2))*(4-sqrt(2))^n)/4.

a(n)=8*a(n-1)-14*a(n-2). [From R. J. Mathar, Jun 18 2009]

a(n) = A081180(n+1) -3*A081180(n). - R. J. Mathar, Jul 19 2012

PROG

(PARI) {default(debug, 0); F=nfinit(x^2-2); for(n=0, 20, print1(nfeltdiv(F, ((2+x)*(4+x)^n+(2-x)*(4-x)^n), 4)[1], ", "))} [From Klaus Brockhaus, Jun 19 2009]

(MAGMA)[Floor(((2+Sqrt(2))*(4+Sqrt(2))^n+(2-Sqrt(2))*(4-Sqrt(2))^n)/4): n in [0..30]]; // Vincenzo Librandi, Aug 18 2011

CROSSREFS

Cf. A016116, A086351, A161734.

Sequence in context: A018903 A083331 A076025 * A049607 A035029 A081569

Adjacent sequences:  A161728 A161729 A161730 * A161732 A161733 A161734

KEYWORD

nonn,easy

AUTHOR

Al Hakanson (hawkuu(AT)gmail.com), Jun 17 2009

EXTENSIONS

Extended by R. J. Mathar and Klaus Brockhaus, Jun 18 2009

Edited by Klaus Brockhaus, Jul 05 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 1 10:33 EDT 2014. Contains 246292 sequences.