login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161729 a(n) = ((4+sqrt(3))*(8+2*sqrt(3))^n-(4-sqrt(3))*(8-2*sqrt(3))^n)/(2*sqrt(3)). 3
1, 16, 204, 2432, 28304, 326400, 3750592, 43036672, 493555968, 5658988544, 64878906368, 743795097600, 8527018430464, 97754949812224, 1120674238611456, 12847530427547648, 147285426432966656, 1688495240694988800 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Eighth binomial transform of A162466.

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..943

FORMULA

a(n) = 16*a(n-1)-52(n-2) for n > 1; a(0) = 1, a(1) = 16.

G.f.: 1/(1-16*x+52*x^2). - Klaus Brockhaus, Jun 19 2009

a(n) = 2^n*A153594(n). - M. F. Hasler, Dec 03 2014

MATHEMATICA

Join[{a=1, b=16}, Table[c=16*b-52*a; a=b; b=c, {n, 40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011*)

LinearRecurrence[{16, -52}, {1, 16}, 20] (* Harvey P. Dale, Dec 23 2020 *)

PROG

(PARI) F=nfinit(x^2-3); for(n=0, 17, print1(nfeltdiv(F, ((4+x)*(8+2*x)^n-(4-x)*(8-2*x)^n), (2*x))[1], ", ")) \\ Klaus Brockhaus, Jun 19 2009

(PARI) Vec(1/(1-16*x+52*x^2)+O(x^25)) \\ M. F. Hasler, Dec 03 2014

CROSSREFS

Cf. A162466, A161728, A153594.

Sequence in context: A144632 A221825 A238282 * A157707 A016217 A055758

Adjacent sequences:  A161726 A161727 A161728 * A161730 A161731 A161732

KEYWORD

nonn

AUTHOR

Al Hakanson (hawkuu(AT)gmail.com), Jun 17 2009

EXTENSIONS

Extended beyond a(5) by Klaus Brockhaus, Jun 19 2009

Edited by Klaus Brockhaus, Jul 05 2009, and M. F. Hasler, Dec 03 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 18:48 EDT 2021. Contains 342951 sequences. (Running on oeis4.)