login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161727 a(n) = ((2+sqrt(3))*(4+sqrt(3))^n-(2-sqrt(3))*(4-sqrt(3))^n)/sqrt(12). 1
1, 6, 35, 202, 1161, 6662, 38203, 219018, 1255505, 7196806, 41252883, 236464586, 1355429209, 7769394054, 44534572715, 255274459018, 1463246226849, 8387401847558, 48077013831427, 275579886633162, 1579637913256745 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Fourth binomial transform of A038754, binomial transform of A140766.

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (8,-13).

FORMULA

a(n) = 8*a(n-1)-13(n-2) for n > 1; a(0) = 1, a(1) = 6.

G.f.: (1-2*x)/(1-8*x+13*x^2). - Klaus Brockhaus, Jun 19 2009

MAPLE

seq(expand(((2+sqrt(3))*(4+sqrt(3))^n-(2-sqrt(3))*(4-sqrt(3))^n)/sqrt(12)), n = 0 .. 20) # Emeric Deutsch, Jun 20 2009

MATHEMATICA

LinearRecurrence[{8, -13}, {1, 6}, 30] (* Harvey P. Dale, Jun 01 2016 *)

PROG

(PARI) F=nfinit(x^2-3); for(n=0, 20, print1(nfeltdiv(F, ((2+x)*(4+x)^n-(2-x)*(4-x)^n), (2*x))[1], ", ")) \\ Klaus Brockhaus, Jun 19 2009

CROSSREFS

Cf. A038754, A140766.

Sequence in context: A081105 A079027 A289784 * A121838 A242629 A001109

Adjacent sequences:  A161724 A161725 A161726 * A161728 A161729 A161730

KEYWORD

nonn,easy

AUTHOR

Al Hakanson (hawkuu(AT)gmail.com), Jun 17 2009

EXTENSIONS

Extended beyond a(6) by Klaus Brockhaus and Emeric Deutsch, Jun 19 2009

Edited by Klaus Brockhaus, Jul 05 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 04:38 EDT 2020. Contains 337264 sequences. (Running on oeis4.)