

A161722


Generalized Bernoulli numbers B_n(X,0), X a Dirichlet character modulus 8.


3



2, 44, 2166, 196888, 28730410, 6148123332, 1813990148894, 705775346640176, 350112935442888018, 215681051222514096220, 161537815119247080938182, 144555133640020128085896264, 152323571317104251881943249786
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

Let X be a periodic arithmetical function with period m. The generalized Bernoulli polynomials B_n(X,x) attached to X are defined by means of the generating function
(1)... t*exp(t*x)/(exp(m*t)1) * sum {r = 0..m1} X(r)*exp(r*t)
= sum {n = 0..inf} B_n(X,x)*t^n/n!.
The values B_n(X,0) are generalizations of the Bernoulli numbers (case X = 1). For the theory and properties of these polynomials and numbers see [Cohen, Section 9.4]. In the present case, X is chosen to be the Dirichlet character modulus 8 given by
(2)... X(8*n+1) = X(8*n+7) = 1; X(8*n+3) = X(8*n+5) = 1; X(2*n) = 0.
The odd indexed generalized Bernoulli numbers B_(2*n+1)(X,0) vanish. The current sequence lists the even indexed values B_(2*n)(X,0).
The coefficients of the generalized Bernoulli polynomials B_n(X,x) are listed in A151751.


REFERENCES

H. Cohen, Number Theory  Volume II: Analytic and Modern Tools, Graduate Texts in Mathematics. SpringerVerlag.


LINKS

Table of n, a(n) for n=2..14.


FORMULA

(1)... a(n) = (1)^(n+1)*2*n*A000464(n1).
The sequence of generalized Bernoulli numbers
(2)... [B_n(X,0)]n>=2 = [2,0,44,0,2166,0,...]
has the e.g.f.
(3)... t*(exp(t)exp(3*t)exp(5*t)+exp(7*t))/(exp(8*t)1),
which simplifies to
(4)... t*sinh(t)/cosh(2*t) = 2*t^2/2!  44*t^4/4! + ....
Hence
(5)... B_(2*n)(X,0) = (1)^(n+1)*2*n*A000464(n1) and B_(2*n+1)(X,0) = 0.


MAPLE

#A161722
with(gfun):
G(x) := x*sinh(x)/cosh(2*x):
coefflist := seriestolist(series(G(x), x, 30)):
seq((2*n)!*coefflist[2*n+1], n = 1..14];


CROSSREFS

A000464, A153641, A151751.
Sequence in context: A208045 A267070 A054732 * A054914 A161745 A048566
Adjacent sequences: A161719 A161720 A161721 * A161723 A161724 A161725


KEYWORD

easy,sign


AUTHOR

Peter Bala, Jun 18 2009


EXTENSIONS

Crossreference corrected by Peter Bala, Jun 22 2009


STATUS

approved



