The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161698 Number of reduced words of length n in the Weyl group B_5. 0
 1, 5, 14, 30, 54, 86, 125, 169, 215, 259, 297, 325, 340, 340, 325, 297, 259, 215, 169, 125, 86, 54, 30, 14, 5, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Computed with MAGMA using commands similar to those used to compute A161409. REFERENCES J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial. N. Bourbaki, Groupes et algèbres. de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.) LINKS FORMULA G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084. MAPLE seq(coeff(series(mul((1-x^(2*k))/(1-x), k=1..5), x, n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 25 2018 MATHEMATICA CoefficientList[Series[Product[(1-x^(2*k)), {k, 1, 5}] /(1-x)^5, {x, 0, 25}], x] (* G. C. Greubel, Oct 25 2018 *) PROG (PARI) t='t+O('t^26); Vec(prod(k=1, 5, 1-t^(2*k))/(1-t)^5) \\ G. C. Greubel, Oct 25 2018 (MAGMA) m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..5]])/(1-t)^5)); // G. C. Greubel, Oct 25 2018 CROSSREFS The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175. Sequence in context: A231669 A256986 A162208 * A049791 A053461 A136135 Adjacent sequences:  A161695 A161696 A161697 * A161699 A161700 A161701 KEYWORD nonn,fini,full AUTHOR John Cannon and N. J. A. Sloane, Nov 30 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 6 06:05 EDT 2020. Contains 335476 sequences. (Running on oeis4.)