login
Number of reduced words of length n in the Weyl group A_50.
0

%I #5 Jul 19 2015 10:28:43

%S 1,50,1274,22049,291499,3139085,28673475,228439966,1619966516,

%T 10384805691,60915061181,330167238726,1666932807305,7892136355680,

%U 35239942525455,149127876298179,600620896491309,2310803893154484

%N Number of reduced words of length n in the Weyl group A_50.

%C Computed with MAGMA using commands similar to those used to compute A161409.

%D J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

%D N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)

%F G.f. for A_m is the polynomial Prod_{k=1..m}(1-x^(k+1))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Nov 30 2009