login
Number of reduced words of length n in the Weyl group A_46.
0

%I #5 Jul 19 2015 10:29:19

%S 1,46,1080,17249,210748,2100337,17779207,131436629,865982661,

%T 5164024608,28210551124,142564402050,671834963239,2972133119783,

%U 12413240052842,49183360339945,185647433835908,670019931232182,2319603230895916

%N Number of reduced words of length n in the Weyl group A_46.

%C Computed with MAGMA using commands similar to those used to compute A161409.

%D J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

%D N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)

%F G.f. for A_m is the polynomial Prod_{k=1..m}(1-x^(k+1))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Nov 30 2009