

A161665


Primes that can be represented as a sum of 2 and also as a sum of 3 distinct nonzero squares, sharing a term in the sums.


0



29, 101, 109, 149, 173, 181, 229, 233, 241, 269, 293, 389, 401, 409, 421, 433, 449, 521, 569, 641, 661, 677, 701, 757, 761, 769, 797, 821, 857, 877, 881, 941, 1021, 1069, 1097, 1109, 1117, 1181, 1229, 1237, 1277, 1289, 1301, 1373, 1381, 1429, 1433, 1481, 1549
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Dropping the requirement of one shared term, we would get the supersequence 17, 29, 41, 53, 61, 73, ...  R. J. Mathar, Oct 04 2009


LINKS

Table of n, a(n) for n=1..49.


EXAMPLE

The prime 29 has the representations 29 = 2^2+ 5^2 = 2^2+3^2+4^2, sharing 2^2.
The prime 101 has the representations 101 = 1^2+10^2 = 1^2+6^2+8^2, sharing 1^2.
The prime 109 has the representations 109 = 3^2+10^2 = 3^2+6^2+8^2, sharing 3^2.
The prime 149 has the representations 149 = 7^2+10^2 = 6^2+7^2+8^2, sharing 7^2.


MATHEMATICA

f[n_]:=Module[{k=1}, While[(nk^2)^(1/2)!=IntegerPart[(nk^2)^(1/2)], k++; If[2*k^2>=n, k=0; Break[]]]; k]; lst={}; Do[a=f[n]; If[a>0, b=f[n(f[n])^2]; If[b>0, c=(na^2b^2)^(1/2); If[a!=b&&a!=c, If[PrimeQ[n], AppendTo[lst, n]]]]], {n, 3, 4*6!}]; lst


CROSSREFS

Cf. A002114, A085317.
Sequence in context: A092373 A240954 A087641 * A127464 A318959 A142109
Adjacent sequences: A161662 A161663 A161664 * A161666 A161667 A161668


KEYWORD

nonn


AUTHOR

Vladimir Joseph Stephan Orlovsky, Jun 15 2009


EXTENSIONS

Definition reverseengineered from program by R. J. Mathar, Oct 04 2009


STATUS

approved



