The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161664 Sum_{i=1..n} i-d(i), where d(n) is the number of divisors of n (A000005). 6
 0, 0, 1, 2, 5, 7, 12, 16, 22, 28, 37, 43, 54, 64, 75, 86, 101, 113, 130, 144, 161, 179, 200, 216, 238, 260, 283, 305, 332, 354, 383, 409, 438, 468, 499, 526, 561, 595, 630, 662, 701, 735, 776, 814, 853, 895, 940, 978, 1024, 1068, 1115, 1161, 1212, 1258, 1309 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Partial Sums of A049820 - Omar E. Pol, Jun 18 2009 The original definition was: Safe periods for the emergence of cicada species on prime number cycles. See Table 9 in reference, page 75, which together with the chart on page 73 (see link) provide a mathematical basis for the emergence of cicada species on prime number cycles. Also the number of 2-element nondividing subsets of {1, ..., n}.  The a(6)=7 subsets of {1,2,3,4,5,6} with two elements where no element divides the other are: {2,3}, {2,5}, {3,4}, {3,5}, {4,5}, {4,6}, {5,6}. - Alois P. Heinz, Mar 08 2011 Sum of the number of proper nondivisors of all positive integers <= n. - Omar E. Pol, Feb 13 2014 REFERENCES E. Haga, Eratosthenes goes bugs! Exploring Prime Numbers, 2007, pp 71-80; first publication 1994. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1000 A. Baker, Are there Genuine Mathematical Explanations of Physical Phenomena?, Mind 114 (454) (2005) 223-238. E. Haga, Prime Safe Periods G. F. Webb, The prime number periodical Cicada problem, Discr. Cont. Dyn. Syst. 1 (3) (2001) 387 Wildforests, Cicada, visited Dec. 2012. - From N. J. A. Sloane, Dec 25 2012 FORMULA a(n) = A000217(n) - A006218(n). EXAMPLE a(8) in A000217 minus a(8) in A006218 = a(7) above (28-16=12). Referring to the chart referenced, when n-th year = 7 there are 16 x-markers. These represent unsafe periods for cicada emergence: 28-16=12 safe periods. The percent of safe periods for the entire 7 years is 12/28=~42.86%; for year 7 alone the calculation is 5/7 = 71.43%, a relatively good time to emerge. MAPLE with(numtheory): A161664:=n->add(i-tau(i), i=1..n): seq(A161664(n), n=1..100); # Wesley Ivan Hurt, Jul 15 2014 MATHEMATICA a[n_] := n*(n+1)/2 - Sum[ DivisorSigma[0, k], {k, n}]; Table[a[n], {n, 55}] (* Jean-François Alcover, Nov 07 2011 *) CROSSREFS Cf. A000005, A000217, A049820, A006218, A051014. Column 2 of triangle A187489. Sequence in context: A024702 A226084 A294861 * A080547 A080555 A320657 Adjacent sequences:  A161661 A161662 A161663 * A161665 A161666 A161667 KEYWORD easy,nonn AUTHOR Enoch Haga, Jun 15 2009 EXTENSIONS Simplified definition, offset corrected and partially edited by Omar E. Pol, Jun 18 2009 New name from Wesley Ivan Hurt, Jul 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 02:33 EST 2020. Contains 332159 sequences. (Running on oeis4.)