OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..360
FORMULA
a(n) = n!*Sum_{k=0..n} (n-k+1)^(k-1)/k! * C(n+k-1,n-k).
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then
a(n,m) = n!*Sum_{k=0..n} m*(n-k+m)^(k-1)/k! * C(n+k-1,n-k).
...
E.g.f.: A(x) = (1/x)*Series_Reversion[ (1-x)^2*LambertW(x/(1-x)^2) ].
a(n) ~ sqrt(s*(1+r*s)/(3+2*r-6*r*s+3*r^2*s^2)) * n^(n-1) / (exp(n) * r^n), where r = 0.219092370374602436272454670371..., s = 1.952248277910295452167538973654... are the roots of the equations 2*s*r^2 = (1-r*s)^3 and r = log(s) * (1-r*s)^2. - Vaclav Kotesovec, Jan 10 2014
EXAMPLE
E.g.f: A(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 553*x^4/4! + 9501*x^5/5! +...
log(A(x))/x = 1 + 2*x*A(x) + 3*x^2*A(x)^2 + 4*x^3*A(x)^3 + 5*x^4*A(x)^4 +...
MATHEMATICA
Flatten[{1, Table[n!*Sum[(n-k+1)^(k-1)/k! * Binomial[n+k-1, n-k], {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Jan 10 2014 *)
FindRoot[{2*s*r^2 == (1-r*s)^3, r == Log[s]*(1-r*s)^2}, {r, 1/2}, {s, 1}, WorkingPrecision->50] (* program for numerical values of constants r and s, Vaclav Kotesovec, Jan 10 2014 *)
PROG
(PARI) {a(n, m=1)=if(n==0, 1, sum(k=0, n, n!/k!*m*(n-k+m)^(k-1)*binomial(n+k-1, n-k)))}
(PARI) {a(n, m=1)=my(A=1+x+x*O(x^n)); for(i=1, n, A=exp(x/(1-x*A)^2)); n!*polcoeff(A^m, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 19 2009
STATUS
approved