The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161594 a(n) = R(f(n)), where R = A004086 = reverse (decimal) digits, f = A071786 = reverse digits of prime factors. 12
 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 21, 13, 41, 51, 61, 17, 81, 19, 2, 12, 22, 23, 42, 52, 26, 72, 82, 29, 3, 31, 23, 33, 241, 53, 63, 37, 281, 39, 4, 41, 24, 43, 44, 54, 46, 47, 84, 94, 5, 312, 421, 53, 45, 55, 65, 372, 481, 59, 6, 61, 62, 36, 46, 551, 66, 67, 482, 69, 7, 71, 27 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Might be called TITO(n), turning n inside out then turning outside in. Here is the operation: take a number n and find its prime factors. Reverse the digits of every prime factor (for example, replace 17 by 71). Multiply the factors respecting multiplicities. For example, if the original number was 17^2*43^3, the new product will be 71^2*34^3. After that, reverse the resulting number. LINKS M. F. Hasler, Table of n, a(n) for n=1..5000. [From M. F. Hasler, Jun 24 2009] T. Khovanova, Turning Numbers Inside Out [From Tanya Khovanova, Jul 07 2009] FORMULA a(p) = p, for prime p. a(A161598(n)) <> A161598(n); a(A161597(n)) = A161597(n); A010051(a(A161600(n))) = 1. From M. F. Hasler, Jun 25 2009: (Start) a( p*10^k ) = p for any prime p. Proof: if gcd( p, 2*5) = 1, then a( p * 10^k ) = R( R(p) * R(2)^k * R(5)^k ) = R( R(p) * 10^k ) = R(R(p)) = p; if gcd(p, 2*5) = 2, then p=2 and a( p * 10^k ) = R( R(2)^(k+1) * R(5)^k ) = R( 2 * 10^k ) = 2 = p and mutatis mutandis for gcd(p, 2*5) = 5. (End) EXAMPLE a(34) = 241, because 34 = 2*17, f(34) = 2*71 = 142, and reversing gives 241. MAPLE read("transforms") ; A071786 := proc(n) local ifs, a, d ; ifs := ifactors(n)[2] ; a := 1 ; for d in ifs do a := a*digrev(op(1, d))^op(2, d) ; od: a ; end: A161594 := proc(n) digrev(A071786(n)) ; end: seq(A161594(n), n=1..80) ; # R. J. Mathar, Jun 16 2009 # second Maple program: r:= n-> (s-> parse(cat(seq(s[-i], i=1..length(s)))))(""||n): a:= n-> r(mul(r(i[1])^i[2], i=ifactors(n)[2])): seq(a(n), n=1..100); # Alois P. Heinz, Jun 19 2017 MATHEMATICA reversepower[{n_, k_}] := FromDigits[Reverse[IntegerDigits[n]]]^k f[n_] := FromDigits[ Reverse[IntegerDigits[Times @@ Map[reversepower, FactorInteger[n]]]]] Table[f[n], {n, 100}] Table[IntegerReverse[Times@@Flatten[Table[IntegerReverse[#[[1]]], #[[2]]]& /@FactorInteger[n]]], {n, 100}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 21 2016 *) PROG (PARI) R=A004086; A161594(n)={n=factor(n); n[, 1]=apply(R, n[, 1]); R(factorback(n))} \\ M. F. Hasler, Jun 24 2009. Removed code for R here, see A004086 for most recent & efficient version. - M. F. Hasler, May 11 2015 (Haskell) a161594 = a004086 . a071786 -- Reinhard Zumkeller, Oct 14 2011 (Python) from math import prod from sympy import factorint def f(n): return prod(int(str(p)[::-1])**e for p, e in factorint(n).items()) def R(n): return int(str(n)[::-1]) def a(n): return 1 if n == 1 else R(f(n)) print([a(n) for n in range(1, 73)]) # Michael S. Branicky, Mar 28 2022 CROSSREFS Cf. A161597, A161598, A161600, A071786, A004086, A151764. Sequence in context: A151765 A343750 A107603 * A084011 A345110 A004086 Adjacent sequences: A161591 A161592 A161593 * A161595 A161596 A161597 KEYWORD nonn,base,nice,look AUTHOR J. H. Conway & Tanya Khovanova, Jun 14 2009 EXTENSIONS Simpler definition from R. J. Mathar, Jun 16 2009 Edited by N. J. A. Sloane, Jun 23 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 01:51 EST 2022. Contains 358649 sequences. (Running on oeis4.)