This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161594 a(n) = R(f(n)), where R = A004086 = reverse (decimal) digits, f = A071786 = reverse digits of prime factors. 12
 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 21, 13, 41, 51, 61, 17, 81, 19, 2, 12, 22, 23, 42, 52, 26, 72, 82, 29, 3, 31, 23, 33, 241, 53, 63, 37, 281, 39, 4, 41, 24, 43, 44, 54, 46, 47, 84, 94, 5, 312, 421, 53, 45, 55, 65, 372, 481, 59, 6, 61, 62, 36, 46, 551, 66, 67, 482, 69, 7, 71, 27 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Might be called TITO(n), turning n inside out then turning outside in. Here is the operation: take a number n and find its prime factors. Reverse the digits of every prime factor (for example, replace 17 by 71). Multiply the factors respecting multiplicities. For example, if the original number was 17^2*43^3, the new product will be 71^2*34^3. After that, reverse the resulting number. LINKS M. F. Hasler, Table of n, a(n) for n=1..5000. [From M. F. Hasler, Jun 24 2009] T. Khovanova, Turning Numbers Inside Out [From Tanya Khovanova, Jul 07 2009] FORMULA a(p) = p, for prime p. a(A161598(n)) <> A161598(n); a(A161597(n)) = A161597(n); A010051(a(A161600(n))) = 1. From M. F. Hasler, Jun 25 2009: (Start) a( p*10^k ) = p for any prime p. Proof: if gcd( p, 2*5) = 1, then a( p * 10^k ) = R( R(p) * R(2)^k * R(5)^k ) = R( R(p) * 10^k ) = R(R(p)) = p; if gcd(p, 2*5) = 2, then p=2 and a( p * 10^k ) = R( R(2)^(k+1) * R(5)^k ) = R( 2 * 10^k ) = 2 = p and mutatis mutandis for gcd(p, 2*5) = 5. (End) EXAMPLE a(34) = 241, because 34 = 2*17, f(34) = 2*71 = 142, and reversing gives 241. MAPLE read("transforms") ; A071786 := proc(n) local ifs, a, d ; ifs := ifactors(n) ; a := 1 ; for d in ifs do a := a*digrev(op(1, d))^op(2, d) ; od: a ; end: A161594 := proc(n) digrev(A071786(n)) ; end: seq(A161594(n), n=1..80) ; # R. J. Mathar, Jun 16 2009 # second Maple program: r:= n-> (s-> parse(cat(seq(s[-i], i=1..length(s)))))(""||n): a:= n-> r(mul(r(i)^i, i=ifactors(n))): seq(a(n), n=1..100);  # Alois P. Heinz, Jun 19 2017 MATHEMATICA reversepower[{n_, k_}] := FromDigits[Reverse[IntegerDigits[n]]]^k f[n_] := FromDigits[ Reverse[IntegerDigits[Times @@ Map[reversepower, FactorInteger[n]]]]] Table[f[n], {n, 100}] Table[IntegerReverse[Times@@Flatten[Table[IntegerReverse[#[]], #[]]& /@FactorInteger[n]]], {n, 100}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 21 2016 *) PROG (PARI) R=A004086; A161594(n)={n=factor(n); n[, 1]=apply(R, n[, 1]); R(factorback(n))} \\  M. F. Hasler, Jun 24 2009. Removed code for R here, see A004086 for most recent & efficient version. - M. F. Hasler, May 11 2015 (Haskell) a161594 = a004086 . a071786  -- Reinhard Zumkeller, Oct 14 2011 CROSSREFS Cf. A161597, A161598, A161600, A071786, A004086, A151764. Sequence in context: A004151 A151765 A107603 * A084011 A004086 A121760 Adjacent sequences:  A161591 A161592 A161593 * A161595 A161596 A161597 KEYWORD nonn,base,nice,look AUTHOR J. H. Conway & Tanya Khovanova, Jun 14 2009 EXTENSIONS Simpler definition from R. J. Mathar, Jun 16 2009 Edited by N. J. A. Sloane, Jun 23 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 16:51 EDT 2019. Contains 328120 sequences. (Running on oeis4.)