login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161591 The list of the B values in the common solutions to the 2 equations 13*k + 1 = A^2, 17*k + 1 = B^2. 3
1, 16, 239, 3569, 53296, 795871, 11884769, 177475664, 2650250191, 39576277201, 590993907824, 8825332340159, 131788991194561, 1968009535578256, 29388354042479279, 438857301101610929, 6553471162481684656, 97863210136123658911, 1461394680879373199009 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The 2 equations are equivalent to the Pell equation x^2 - 221*y^2 = 1, with x = (221*k+15)/2 and y = A*B/2, case C=13 in A160682.

LINKS

Table of n, a(n) for n=1..19.

Index entries for linear recurrences with constant coefficients, signature (15,-1).

FORMULA

B(t+2) = 15*B(t+1) - B(t).

B(t) = ((221+17*w)*((15+w)/2)^(t-1) + (221-17*w)*((15-w)/2)^(t-1))/442 where w=sqrt(221).

B(t) = floor of ((221+17*w)*((15+w)/2)^(t-1))/442 = A078364(t-2) + A078364(t-1).

G.f.: x*(1+x)/(1-15*x+x^2).

MAPLE

t:=0: for b from 1 to 1000000 do a:=sqrt((13*b^2+4)/17):

if (trunc(a)=a) then t:=t+1: n:=(b^2-1)/17: print(t, a, b, n): end if: end do:

MATHEMATICA

LinearRecurrence[{15, -1}, {1, 16}, 30] (* Harvey P. Dale, Dec 04 2015 *)

PROG

(Sage) [(lucas_number2(n, 15, 1)-lucas_number2(n-1, 15, 1))/13 for n in xrange(1, 20)] # Zerinvary Lajos, Nov 10 2009

CROSSREFS

Cf. A160682 (sequence of A), A161584 (sequence of k).

Sequence in context: A266099 A264343 A283411 * A227440 A103975 A162791

Adjacent sequences:  A161588 A161589 A161590 * A161592 A161593 A161594

KEYWORD

nonn

AUTHOR

Paul Weisenhorn, Jun 14 2009

EXTENSIONS

Edited, extended by R. J. Mathar, Sep 02 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 10:48 EDT 2018. Contains 316436 sequences. (Running on oeis4.)