login
Number of reduced words of length n in the Weyl group E_6 on 6 generators and order 51840.
120

%I #18 Sep 08 2022 08:45:45

%S 1,6,20,50,105,195,329,514,754,1048,1389,1765,2159,2549,2911,3222,

%T 3461,3611,3662,3611,3461,3222,2911,2549,2159,1765,1389,1048,754,514,

%U 329,195,105,50,20,6,1

%N Number of reduced words of length n in the Weyl group E_6 on 6 generators and order 51840.

%D N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche V.)

%D J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

%H <a href="/index/Gre#groups">Index entries for sequences related to groups</a>

%F G.f.: f(2)f(5)f(6)f(8)f(9)f(12)/f(1)^6 where f(k) = 1-x^k.

%e Coxeter matrix:

%e . [1 2 3 2 2 2]

%e . [2 1 2 3 2 2]

%e . [3 2 1 3 2 2]

%e . [2 3 3 1 3 2]

%e . [2 2 2 3 1 3]

%e . [2 2 2 2 3 1]

%t CoefficientList[Series[((1-x^2) (1-x^5) (1-x^6) (1-x^8) (1-x^9) (1-x^12))/(1-x)^6,{x,0,40}],x] (* _Harvey P. Dale_, Aug 17 2011 *)

%o (Magma)

%o G := CoxeterGroup(GrpFPCox, "E6");

%o f := GrowthFunction(G);

%o Coefficients(PolynomialRing(IntegerRing())!f);

%o // Corrected by _Klaus Brockhaus_, Feb 12 2010

%Y Cf. A161410, A154638.

%K nonn,fini,full

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Nov 29 2009