%I #16 Sep 08 2022 08:45:45
%S 107,149,170,179,194,197,379,397,419,491,701,709,710,719,739,790,791,
%T 793,907,914,917,937,941,970,971,973,1003,1007,1009,1012,1013,1015,
%U 1016,1018,1019,1021,1024,1028,1030,1031,1033,1036,1037,1039,1042,1049,1051
%N Numbers n such that the count of primes among the permutations of the digits of n is greater than 3.
%C Leading zeros in the permutations are ignored.
%H Cino Hilliard, <a href="/A161401/a161401.txt">Comments and PARI program.</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Permutation">Permutation</a>
%e 107 has four permutations of its digits 1, 0, 7 that form a prime, namely 107, 017, 071, 701. So the count of primes for 107 is greater than 3 and 107 is in the sequence.
%t Select[Range[1100],Count[FromDigits/@Permutations[IntegerDigits[#]], _?PrimeQ]>3&] (* _Harvey P. Dale_, Mar 04 2013 *)
%o (PARI) See Hilliard link.
%o (Magma) [ n: n in [1..1060] | #[ s: s in Seqset([ Seqint([m(p[i]):i in [1..#x] ], 10): p in Permutations(Seqset(x)) ]) | IsPrime(s) ] gt 3 where m is map< x->y | [<x[i],y[i]>:i in [1..#x] ] > where x is [1..#y] where y is Intseq(n,10) ]; // _Klaus Brockhaus_, Jun 14 2009
%Y Cf. A161401, A161402, A161404.
%K base,nonn
%O 1,1
%A _Cino Hilliard_, Jun 09 2009
%E Edited by _Klaus Brockhaus_, Jun 14 2009