login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161342 Number of "ON" cubic cells at n-th stage in simple 3-dimensional cellular automaton: a(n) = A160428(n)/8. 7
0, 1, 8, 15, 64, 71, 120, 169, 512, 519, 568, 617, 960, 1009, 1352, 1695, 4096, 4103, 4152, 4201, 4544, 4593, 4936, 5279, 7680, 7729, 8072, 8415, 10816, 11159, 13560, 15961, 32768, 32775, 32824, 32873 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

First differences are in A161343. - Omar E. Pol, May 03 2015

From Gary W. Adamson, Aug 30 2016: (Start)

Let M =

_1, 0, 0, 0, 0,...

_8, 0, 0, 0, 0,...

_7, 1, 0, 0, 0,...

_0, 8, 0, 0, 0,...

_0, 7, 1, 0, 0,...

_0, 0, 8, 0, 0,...

_0, 0, 7, 1, 0,...

...

Then M^k converges to a single nonzero column giving the sequence.

The sequence with offset 1 divided by its aerated variant is (1, 8, 7, 0, 0, 0,...). (End)

LINKS

Table of n, a(n) for n=0..35.

N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS

Index entries for sequences related to cellular automata

FORMULA

From Nathaniel Johnston, Nov 13 2010: (Start)

a(n) = Sum_{k=0..n-1} 7^A000120(k).

a(n) = 1 + 7 * Sum_{k=1..n-1} A151785(k), for n >= 1.

a(2^n) = 2^{3n}.

(End)

CROSSREFS

Cf. A160410, A160428, A161343, A006046, A130665, A116520, A130667, A116522, A116526, A116525.

Sequence in context: A167340 A037377 A166704 * A048732 A185038 A193490

Adjacent sequences:  A161339 A161340 A161341 * A161343 A161344 A161345

KEYWORD

nonn

AUTHOR

Omar E. Pol, Jun 14 2009

EXTENSIONS

More terms from Nathaniel Johnston, Nov 13 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 22:34 EST 2019. Contains 329323 sequences. (Running on oeis4.)