login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161204 a(0)=2. a(n+1) = 2*a(n) + period 4: repeat -5,1,3,1. 1
2, -1, -1, 1, 3, 1, 3, 9, 19, 33, 67, 137, 275, 545, 1091, 2185, 4371, 8737, 17475, 34953, 69907, 139809, 279619, 559241, 1118483, 2236961, 4473923, 8947849, 17895699, 35791393, 71582787, 143165577, 286331155, 572662305, 1145324611, 2290649225, 4581298451, 9162596897 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,1,1,2).

FORMULA

First differences of A180343(n).

G.f.: ( -2 + 3*x - x^3 + 2*x^2 ) / ( (2*x-1)*(1+x)*(1+x^2) ). - R. J. Mathar, Jan 26 2011

a(n) = 4*(-1)^floor((n+1)/2)*A000034(n+1)/5 + 2^n/15 + (-1)^n/3. - R. J. Mathar, Jan 26 2011

a(n) = a(n-4) + 2^(n-4).

a(n) = a(n-2) + (-3,2,4,0,0,8,16,24,=sixth differences of A007910(n-1) = 0,0,1,2,3,6,13 or fifth differences of A007909(n); also -3,2,4,8*A007910(n-1)).

a(n) = a(n-1) + a(n-2) + a(n-3) + 2*a(n-4). - Vincenzo Librandi, Jun 17 2012

MAPLE

A000034 := proc(n) if type(n, 'even') then 1 ; else 2 ; end if; end proc:

A161204 := proc(n) 4*(-1)^floor((n+1)/2)*A000034(n+1)/5+2^n/15+(-1)^n/3 ; end proc: # R. J. Mathar, Jan 26 2011

MATHEMATICA

CoefficientList[Series[(-2+3*x-x^3+2*x^2)/((2*x-1)*(1+x)*(1+x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 17 2012 *)

PROG

(MAGMA) I:=[2, -1, -1, 1]; [n le 4 select I[n] else Self(n-1)+Self(n-2)+Self(n-3)+2*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 17 2012

CROSSREFS

Sequence in context: A091981 A060247 A060246 * A123541 A324537 A090379

Adjacent sequences:  A161201 A161202 A161203 * A161205 A161206 A161207

KEYWORD

sign,easy

AUTHOR

Paul Curtz, Jan 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 13 18:57 EDT 2019. Contains 327981 sequences. (Running on oeis4.)