login
A161180
Sum of primes between n^2 and n^2+n, n^2+n and (n+1)^2. The only intervals for which n^2+n is prime are [1,2], [2,4] and the endpoint 2 is included in the sum. One might have written 0,3,5,7,..., etc.
1
2, 5, 5, 7, 11, 13, 36, 23, 29, 31, 78, 90, 53, 120, 138, 152, 172, 97, 420, 113, 258, 276, 300, 487, 533, 384, 396, 434, 928, 492, 1060, 841, 293, 1248, 668, 1408, 1119, 1169, 1229, 1724, 1810, 1409, 1980, 1553, 1088, 2260, 2356, 3057, 2562, 2646, 2752, 2155
OFFSET
1,1
EXAMPLE
On [1,2] the sum of primes is 2. For [2,4] the sum is 5. [4,6]: 5, [6,9]: 7, [9,12]: 11, [12,16]: 13, [16,20]: 17+19 = 36.
MAPLE
A161180 := proc(n) a := 0 ; if type(n, 'odd') then nloc := (n+1)/2 ; for p from nloc^2 to nloc^2+nloc do if isprime(p) then a := a+p ; end if; end do: else nloc := n/2 ; for p from nloc^2+nloc to (nloc+1)^2 do if isprime(p) then a := a+p ; end if; end do: end if; a; end proc: seq(A161180(n), n=1..120) ; # R. J. Mathar, May 31 2010
CROSSREFS
Sequence in context: A175649 A240497 A142353 * A101858 A329813 A165917
KEYWORD
easy,nonn
AUTHOR
Daniel Tisdale, Jun 05 2009
EXTENSIONS
Corrected (128 replaced by 138) and extended by R. J. Mathar, May 31 2010
STATUS
approved