This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161132 Number of permutations of {1,2,...,n} that have no even fixed points. 2
 1, 1, 1, 4, 14, 78, 426, 3216, 24024, 229080, 2170680, 25022880, 287250480, 3884393520, 52370755920, 812752093440, 12585067447680, 220448163358080, 3854801333416320, 75225258805132800, 1465957162768492800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS FORMULA a(n)=Sum[d(n-j)*binom(ceil(n/2), j), j=0..ceil(n/2)], where d(i)=A000166(i) are the derangement numbers. a(n)=Sum[(-1)^(j)*binomial(floor(n/2),j)*(n-j)!, j=0..floor(n/2)]. EXAMPLE a(3)=4 because we have 132, 312, 213, and 231. MAPLE d[0] := 1: for n to 25 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: add(d[n-j]*binomial(ceil((1/2)*n), j), j = 0 .. ceil((1/2)*n)) end proc: seq(a(n), n = 0 .. 22); a := proc (n) options operator, arrow: add((-1)^j*binomial(floor((1/2)*n), j)*factorial(n-j), j = 0 .. floor((1/2)*n)) end proc; seq(a(n), n = 0 .. 22); [From Emeric Deutsch, Jul 18 2009] CROSSREFS Sequence in context: A222900 A222485 A009347 * A186638 A187847 A003707 Adjacent sequences:  A161129 A161130 A161131 * A161133 A161134 A161135 KEYWORD nonn AUTHOR Emeric Deutsch, Jul 18 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .