This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161131 Number of permutations of {1,2,...,n} that have no odd fixed points. 2
 1, 0, 1, 3, 14, 64, 426, 2790, 24024, 205056, 2170680, 22852200, 287250480, 3597143040, 52370755920, 760381337520, 12585067447680, 207863095910400, 3854801333416320, 71370457471716480, 1465957162768492800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS FORMULA a(n)=Sum[d(n-j)*binom(floor(n/2), j), j=0..floor(n/2)], where d(i)=A000166(i) are the derangement numbers. Contribution from Emeric Deutsch, Jul 18 2009: (Start) a(n)=Sum[(-1)^j*binom(ceil(n/2), j)*(n-j)!, j=0..ceil(n/2)]. (End) EXAMPLE a(3)=3 because we have 312, 231, and 321. MAPLE d[0] := 1: for n to 25 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: add(d[n-j]*binomial(floor((1/2)*n), j), j = 0 .. floor((1/2)*n)) end proc; seq(a(n), n = 0 .. 22); a := proc (n) options operator, arrow: add((-1)^j*binomial(ceil((1/2)*n), j)*factorial(n-j), j = 0 .. ceil((1/2)*n)) end proc; seq(a(n), n = 0 .. 22); [From Emeric Deutsch, Jul 18 2009] CROSSREFS Sequence in context: A060801 A151239 A151240 * A026592 A034275 A151322 Adjacent sequences:  A161128 A161129 A161130 * A161132 A161133 A161134 KEYWORD nonn AUTHOR Emeric Deutsch, Jul 18 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .