login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161126 Triangle read by rows: T(n,k) is the number of involutions of {1,2,...,n} having k descents (n >= 1; 0 <= k < n). 3
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 12, 6, 1, 1, 9, 28, 28, 9, 1, 1, 12, 57, 92, 57, 12, 1, 1, 16, 105, 260, 260, 105, 16, 1, 1, 20, 179, 630, 960, 630, 179, 20, 1, 1, 25, 289, 1397, 3036, 3036, 1397, 289, 25, 1, 1, 30, 444, 2836, 8471, 12132, 8471, 2836, 444, 30, 1, 1, 36 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Also number of ballot sequences of length n with k ascents; also number of standard Young tableaux with n cells such that there are k pairs of cells (v,v+1) with v+1 lying in a row below v. - Joerg Arndt, Feb 21 2014

See the Brualdi/Ma reference for the connection to A138177. - Joerg Arndt, Nov 02 2014

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

Richard A. Brualdi, Shi-Mei Ma, Enumeration of involutions by descents and symmetric matrices, European Journal of Combinatorics, vol. 43, pp. 220-228, (January 2015).

J. Désarménien and D. Foata, Fonctions symétriques et séries hypergéometriques basiques multivariées, Bull. Soc. Math. France, 113, 1985, 3-22.

Samantha Dahlberg, Combinatorial Proofs of Identities Involving Symmetric Matrices, arXiv:1410.7356 [math.CO], 2014-2017.

I. M. Gessel and C. Reutenauer, Counting permutations with given cycle structure and descent set, J. Combin. Theory, Ser. A, 64, 1993, 189-215.

V. J. W. Guo and J. Zeng, The Eulerian distribution on involutions is indeed unimodal, J. Combin. Theory, Ser. A, 113, 2006, 1061-1071.

FORMULA

Sum_{k=1..n} T(n,k) = A000085(n) (row sums).

Sum_{k=0..n-1} k*T(n,k) = A161125(n).

Generating polynomial of row n is P(n,t) = (1-t)^(n+1) * Sum_{r>=0} t^r*Sum_{k=0..floor(n/2)} C(r(r+1)/2+k-1,k)*C(r+n-2k,n-2k) (see Eq. (2.5) in the Guo-Zeng paper; see first Maple program).

Recursive relation for n >= 3, k >= 0: n*T(n,k) = (k+1)*T(n-1,k) + (n-k)*T(n-1,k-1) + [(k+1)^2 + n-2]*T(n-2,k) + [2k(n-k-1)-n+3]*T(n-2,k-1] + [(n-k)^2+n-2]*T(n-2,k-2) (see Eq. (2.4) in the Guo-Zeng paper; see 2nd Maple program).

EXAMPLE

T(4,2)=4 because we have 1432, 2143, 4231, and 3214.

Triangle starts:

01: 1

02: 1,  1

03: 1,  2,   1

04: 1,  4,   4,    1

05: 1,  6,  12,    6,     1

06: 1,  9,  28,   28,     9,      1

07: 1, 12,  57,   92,    57,     12,      1

08: 1, 16, 105,  260,   260,    105,     16,      1

09: 1, 20, 179,  630,   960,    630,    179,     20,     1

10: 1, 25, 289, 1397,  3036,   3036,   1397,    289,    25,    1

11: 1, 30, 444, 2836,  8471,  12132,   8471,   2836,   444,   30,   1

12: 1, 36, 659, 5434, 21529,  42417,  42417,  21529,  5434,  659,  36,  1

13: 1, 42, 945, 9828, 50423, 132146, 181734, 132146, 50423, 9828, 945, 42, 1

...

MAPLE

P := proc (n) options operator, arrow: sort(simplify((1-t)^(n+1)*(sum(t^r*(sum(binomial((1/2)*r*(r+1)+k-1, k)*binomial(r+n-2*k, n-2*k), k = 0 .. floor((1/2)*n))), r = 0 .. infinity)))) end proc: for n to 12 do seq(coeff(P(n), t, j), j = 0 .. n-1) end do; # yields sequence in triangular form

T := proc(n, k) option remember; if k < 0 then 0 elif n <= k then 0 elif n = 1 and k = 0 then 1 elif n = 2 and k = 0 then 1 elif n = 2 and k = 1 then 1 else ((k+1)*T(n-1, k)+(n-k)*T(n-1, k-1)+((k+1)^2+n-2)*T(n-2, k)+(2*k*(n-k-1)-n+3)*T(n-2, k-1)+((n-k)^2+n-2)*T(n-2, k-2))/n end if end proc: for n to 12 do seq(T(n, k), k = 0 .. n-1) end do; # yields sequence in triangular form

MATHEMATICA

P[n_, t_] := (1-t)^(n+1)*Sum[t^r*Binomial[n+r, n]*HypergeometricPFQ[{(1 - n)/2, -n/2, r(r+1)/2}, {(-n-r)/2, (1-n-r)/2}, 1], {r, 0, n}]; row[n_] := CoefficientList[P[n, t] + O[t]^n, t]; Table[row[n], {n, 1, 13}] // Flatten (* Jean-François Alcover, Dec 20 2016 *)

CROSSREFS

Cf. A000085, A161125, A138177.

Sequence in context: A274310 A096806 A116672 * A128562 A034368 A296157

Adjacent sequences:  A161123 A161124 A161125 * A161127 A161128 A161129

KEYWORD

nonn,tabl

AUTHOR

Emeric Deutsch, Jun 09 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 06:09 EST 2020. Contains 338833 sequences. (Running on oeis4.)