login
a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 13.
1

%I #10 Nov 09 2022 07:55:23

%S 8191,33542145,2176512520,68694312960,499938962796,8912818769400,

%T 18895663909200,140685952942080,385562663380440,2047250052649620,

%U 2570686683371352,18253452839731200,15902884603186140,77377743708174000,132843781194153120,288124831625379840

%N a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 13.

%H Amiram Eldar, <a href="/A161024/b161024.txt">Table of n, a(n) for n = 1..10000</a>

%H Jin Ho Kwak and Jaeun Lee, <a href="https://doi.org/10.1142/9789812799890_0005">Enumeration of graph coverings, surface branched coverings and related group theory</a>, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.

%F From _Amiram Eldar_, Nov 08 2022: (Start)

%F a(n) = 8191 * A160972(n).

%F Sum_{k=1..n} a(k) ~ c * n^12, where c = (8191/12) * Product_{p prime} (1 + (p^11-1)/((p-1)*p^12)) = 1326.4495346... .

%F Sum_{k>=1} 1/a(k) = (zeta(11)*zeta(12)/8191) * Product_{p prime} (1 - 2/p^12 + 1/p^23) = 0.0001221155049... . (End)

%t f[p_, e_] := p^(11*e - 11) * (p^12-1) / (p-1); a[1] = 8191; a[n_] := 8191 * Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* _Amiram Eldar_, Nov 08 2022 *)

%o (PARI) a(n) = {my(f = factor(n)); 8191 * prod(i = 1, #f~, (f[i,1]^12 - 1)*f[i,1]^(11*f[i,2] - 11)/(f[i,1] - 1));} \\ _Amiram Eldar_, Nov 08 2022

%Y Cf. A000010, A013669, A013670, A160972.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Nov 19 2009