

A161002


Least prime of three consecutive primes (p1,p2,p3) such that p2p1 and p3p2 are both perfect squares.


3



9547, 12853, 22189, 22303, 27127, 29881, 32257, 40387, 42859, 46771, 46957, 47977, 57601, 60037, 60457, 71593, 72577, 73783, 77101, 84247, 88423, 89137, 90547, 93427, 97459, 97609, 97879, 112507, 115021, 118927, 126271, 127873, 131317
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Sequence is probably infinite.
a(3859) = 11981443 is the first term in the sequence where neither of the prime gaps is 36.


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000


EXAMPLE

Consecutive primes (22189, 22193, 22229) have gaps (4, 36) so 22189 is in the sequence.


MATHEMATICA

Transpose[Select[Partition[Prime[Range[12300]], 3, 1], IntegerQ[Sqrt[#[[2]] #[[1]]]]&&IntegerQ[Sqrt[#[[3]]#[[2]]]]&]][[1]] (* Harvey P. Dale, Dec 21 2011 *)


CROSSREFS

Cf. A138198.
Sequence in context: A202613 A236161 A252512 * A134117 A232189 A271046
Adjacent sequences: A160999 A161000 A161001 * A161003 A161004 A161005


KEYWORD

nonn


AUTHOR

Ki Punches, Jun 01 2009


EXTENSIONS

Edited by Ray Chandler, Jun 08 2009


STATUS

approved



