%I #26 Nov 08 2022 08:07:41
%S 1,1023,29524,523776,2441406,30203052,47079208,268173312,581120892,
%T 2497558338,2593742460,15463962624,11488207654,48162029784,
%U 72080070744,137304735744,125999618778,594486672516,340614792100,1278749869056
%N a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 11.
%C a(n) is the number of lattices L in Z^10 such that the quotient group Z^10 / L is C_n. - _Álvar Ibeas_, Nov 26 2015
%H Álvar Ibeas, <a href="/A160957/b160957.txt">Table of n, a(n) for n = 1..10000</a>
%H Jin Ho Kwak and Jaeun Lee, <a href="https://doi.org/10.1142/9789812799890_0005">Enumeration of graph coverings, surface branched coverings and related group theory</a>, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.
%H <a href="/index/J#nome">Index to Jordan function ratios J_k/J_1</a>.
%F a(n) = A069095(n)/A000010(n). - _R. J. Mathar_, Jul 12 2011
%F From _Álvar Ibeas_, Nov 26 2015: (Start)
%F Multiplicative with a(p^e) = p^(9e-9) * (p^10-1) / (p-1).
%F For squarefree n, a(n) = A000203(n^9). (End)
%F From _Amiram Eldar_, Nov 08 2022: (Start)
%F Sum_{k=1..n} a(k) ~ c * n^10, where c = (1/10) * Product_{p prime} (1 + (p^9-1)/((p-1)*p^10)) = 0.1942316928... .
%F Sum_{k>=1} 1/a(k) = zeta(9)*zeta(10) * Product_{p prime} (1 - 2/p^10 + 1/p^19) = 1.0010137674... . (End)
%t b = 11; Table[Sum[MoebiusMu[n/d] d^(b - 1)/EulerPhi@ n, {d, Divisors@ n}], {n, 20}] (* _Michael De Vlieger_, Nov 27 2015 *)
%t f[p_, e_] := p^(9*e - 9) * (p^10-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* _Amiram Eldar_, Nov 08 2022 *)
%o (PARI) vector(100, n, sumdiv(n^9, d, if(ispower(d, 10), moebius(sqrtnint(d, 10))*sigma(n^9/d), 0))) \\ _Altug Alkan_, Nov 26 2015
%o (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^10 - 1)*f[i,1]^(9*f[i,2] - 9)/(f[i,1] - 1));} \\ _Amiram Eldar_, Nov 08 2022
%Y Column 10 of A263950.
%Y Cf. A000010, A000203, A013667, A013668, A069095.
%K nonn,mult
%O 1,2
%A _N. J. A. Sloane_, Nov 19 2009
%E Definition corrected by _Enrique Pérez Herrero_, Oct 30 2010