login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS Foundation is grateful to everyone who made a donation during our Annual Appeal.     Visit the new and spectacular Pictures from the OEIS page!

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160953 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 10. 3
1, 511, 9841, 130816, 488281, 5028751, 6725601, 33488896, 64566801, 249511591, 235794769, 1287360256, 883708281, 3436782111, 4805173321, 8573157376, 7411742281, 32993635311, 17927094321, 63874967296, 66186639441 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) is the number of lattices L in Z^9 such that the quotient group Z^9 / L is C_n. - Álvar Ibeas, Nov 03 2015

REFERENCES

J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.

LINKS

Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000

Enrique Pérez Herrero, Mathematica Package: Jordan Totient Function.

FORMULA

a(n) = J_9(n)/phi(n) = A069094(n)/A000010(n).

From Álvar Ibeas, Nov 03 2015: (Start)

Multiplicative with a(p^e) = p^(8e-8) * (p^9-1) / (p-1).

For squarefree n, a(n) = A000203(n^8).

(End)

MATHEMATICA

JordanTotient[n_, k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/#]&]/; (n>0)&&IntegerQ[n];

A160953[n_]:=JordanTotient[n, 9]/JordanTotient[n];

PROG

(PARI) vector(100, n, sumdiv(n^8, d, if(ispower(d, 9), moebius(sqrtnint(d, 9))*sigma(n^8/d), 0))) \\ Altug Alkan, Nov 05 2015

(PARI) a(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; f[i, 1] = p^(8*f[i, 2]-8)*(p^9-1)/(p-1); f[i, 2] = 1; ); factorback(f); } \\ Michel Marcus, Nov 12 2015

CROSSREFS

Sequence in context: A204739 A075948 A011559 * A038996 A068025 A075943

Adjacent sequences:  A160950 A160951 A160952 * A160954 A160955 A160956

KEYWORD

nonn,mult

AUTHOR

N. J. A. Sloane, Nov 19 2009

EXTENSIONS

Definition corrected by Enrique Pérez Herrero, Oct 30 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 10 18:55 EST 2016. Contains 268157 sequences.