%I #18 Oct 29 2022 04:49:31
%S 102,150,420,660,858,1020,2310,2730,3120,3390,5100,5502,5850,6198,
%T 7758,12540,13692,13998,15360,17292,21840,23688,25932,32832,41520,
%U 43398,46092,49032,49410,50892,58152,61560,64920,70878,72270,78138,88818
%N Averages of twin prime pairs that are sums of 4 consecutive averages of twin prime pairs.
%C Members of A014574 which can be written as a sum of 4 consecutive members.
%H Amiram Eldar, <a href="/A160918/b160918.txt">Table of n, a(n) for n = 1..10000</a>
%F {A014574(i): A014574(i) = Sum_{k=0..3} A014574(j+k) for some k,j}.
%e 102 is in the sequence because it can be written as 12 + 18 + 30 + 42.
%e 150 is in the sequence because it is 18 + 30 + 42 + 60.
%t PrimeNextTwinAverage[n_]:=Module[{k},k=n+1;While[ !PrimeQ[k-1]||!PrimeQ[k+1],k++ ];k];lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1],a=n;b=PrimeNextTwinAverage[a];c=PrimeNextTwinAverage[b];d=PrimeNextTwinAverage[c];a=a+b+c+d;If[PrimeQ[a-1]&&PrimeQ[a+1],AppendTo[lst,a]]],{n,2*8!}];lst
%t With[{tpms=Mean/@Select[Partition[Prime[Range[10000]],2,1],#[[2]]- #[[1]] ==2&]},Total/@Select[Partition[tpms,4,1],MemberQ[tpms,Total[#]]&]] (* _Harvey P. Dale_, Apr 27 2012 *)
%Y Cf. A014574, A160916, A160917.
%K nonn
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, May 30 2009