This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A160908 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 9. 3
 1, 255, 3280, 32640, 97656, 836400, 960800, 4177920, 7173360, 24902280, 21435888, 107059200, 67977560, 245004000, 320311680, 534773760, 435984840, 1829206800, 943531280, 3187491840, 3151424000, 5466151440, 3559590240, 13703577600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) = J_8(n)/J_1(n) = J_8(n)/phi(n) = A069093(n)/A000010(n), where J_k is the k-th Jordan Totient Function. - Enrique Pérez Herrero, Oct 28 2010 a(n) is the number of lattices L in Z^8 such that the quotient group Z^8 / L is C_n. - Álvar Ibeas, Oct 30 2015 LINKS G. C. Greubel, Table of n, a(n) for n = 1..5000 J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134. FORMULA From Álvar Ibeas, Oct 30 2015: (Start) Multiplicative with a(p^e) = p^(7e-7) * (p^8-1) / (p-1). For squarefree n, a(n) = A000203(n^7). (End) MATHEMATICA A160908[n_]:=DivisorSum[n, MoebiusMu[n/# ]*#^(9-1)/EulerPhi[n]&] (* Enrique Pérez Herrero, Oct 28 2010 *) PROG (PARI) vector(30, n, sumdiv(n^7, d, if(ispower(d, 8), moebius(sqrtnint(d, 8))*sigma(n^7/d), 0))) \\ Altug Alkan, Oct 30 2015 (PARI) a(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; f[i, 1] = p^(7*f[i, 2]-7)*(p^8-1)/(p-1); f[i, 2] = 1; ); factorback(f); } \\ Michel Marcus, Nov 12 2015 CROSSREFS Sequence in context: A259247 A204738 A206048 * A038995 A068024 A028524 Adjacent sequences:  A160905 A160906 A160907 * A160909 A160910 A160911 KEYWORD nonn,mult AUTHOR N. J. A. Sloane, Nov 19 2009 EXTENSIONS Definition corrected by Enrique Pérez Herrero, Oct 28 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 12:04 EST 2019. Contains 329979 sequences. (Running on oeis4.)