This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A160891 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 5. 9
 1, 15, 40, 120, 156, 600, 400, 960, 1080, 2340, 1464, 4800, 2380, 6000, 6240, 7680, 5220, 16200, 7240, 18720, 16000, 21960, 12720, 38400, 19500, 35700, 29160, 48000, 25260, 93600, 30784, 61440, 58560, 78300, 62400, 129600, 52060, 108600, 95200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) is the number of lattices L in Z^4 such that the quotient group Z^4 / L is C_nm x (C_m)^3 (and also (C_nm)^3 x C_m), for every m>=1. - Álvar Ibeas, Oct 30 2015 REFERENCES J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134. LINKS Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000 FORMULA a(n) = J_4(n)/J_1(n) = J_4(n)/phi(n) = A059377(n)/A000010(n), where J_k is the k-th Jordan Totient Function. - Enrique Pérez Herrero, Oct 19 2010 Multiplicative with a(p^e) = p^(3e-3)*(1+p+p^2+p^3). - R. J. Mathar, Jul 10 2011 For squarefree n, a(n) = A000203(n^3). - Álvar Ibeas, Oct 30 2015 EXAMPLE There are 1395 = A160870(8,4) lattices of volume 8 in Z^4. Among them, a(8) = 960 give the quotient group C_8 and a(2) = 15 give C_2 x C_2 x C_2. Among the lattices of volume 64 in Z^4, there are a(4) = 120 such that the quotient group is C_4 x C_4 x C_4 and other 120 with quotient group C_8 x (C_2)^3. MAPLE A160891 := proc(n) a := 1 ; for f in ifactors(n)[2] do p := op(1, f) ; e := op(2, f) ; a := a*p^(3*e-3)*(1+p+p^2+p^3) ; end do; a; end proc: seq(A160891(n), n=1..20) ; # R. J. Mathar, Jul 10 2011 MATHEMATICA A160891[n_]:=DivisorSum[n, MoebiusMu[n/#]*#^(5-1)/EulerPhi[n]&] (* Enrique Pérez Herrero, Oct 19 2010 *) PROG (PARI) vector(50, n, sumdiv(n^3, d, if(ispower(d, 4), moebius(sqrtnint(d, 4))*sigma(n^3/d), 0))) \\ Altug Alkan, Oct 30 2014 (PARI) a(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; f[i, 1] = p^(3*f[i, 2]-3)*(1+p+p^2+p^3); f[i, 2] = 1; ); factorback(f); } \\ Michel Marcus, Nov 12 2015 CROSSREFS Cf. A160893, A160895, A160897, A160960, A160972, A161010, A161025, A161139, A161167, A161213, A065958, A065959, A065960. - Enrique Pérez Herrero, Oct 19 2010 Sequence in context: A044473 A067724 A005337 * A223425 A175926 A038991 Adjacent sequences:  A160888 A160889 A160890 * A160892 A160893 A160894 KEYWORD nonn,mult,changed AUTHOR N. J. A. Sloane, Nov 19 2009 EXTENSIONS Definition corrected by Enrique Pérez Herrero, Aug 22 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .