login
Vertex number of a rectangular spiral. The first differences (A160791) are the edge lengths of the spiral. The distances between two nearest edges, that are parallel to the initial edge, are the natural numbers.
7

%I #19 Jun 13 2015 00:53:12

%S 0,1,2,4,7,10,16,20,30,35,50,56,77,84,112,120,156,165,210,220,275,286,

%T 352,364,442,455,546,560,665,680,800,816,952,969,1122,1140,1311,1330,

%U 1520,1540,1750,1771,2002,2024,2277,2300,2576,2600,2900,2925,3250,3276,3627,3654,4032,4060,4466,4495,4930,4960,5425

%N Vertex number of a rectangular spiral. The first differences (A160791) are the edge lengths of the spiral. The distances between two nearest edges, that are parallel to the initial edge, are the natural numbers.

%H Nathaniel Johnston, <a href="/A160790/b160790.txt">Table of n, a(n) for n = 0..5000</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,-3,3,1,-1).

%F a(n) = +a(n-1) +3*a(n-2) -3*a(n-3) -3*a(n-4) +3*a(n-5) +a(n-6) -a(n-7).

%F G.f.: -x*(-1-x+x^2) / ( (1+x)^3*(x-1)^4 ).

%F a(n) = (2*n+3+(-1)^n)*(2*n+3-3*(-1)^n)*(2*n+15+5*(-1)^n)/384. - _Luce ETIENNE_, Mar 31 2015

%p A160791 := proc(n) if type(n,'odd') then ceil(n/2) ; else A000217(n/2) ; end if; end proc:

%p A160790 := proc(n) if n = 0 then 0; else add(A160791(i),i=0..n) ; end if; end proc:

%p seq(A160790(n),n=0..60) ;

%t Table[(2*n + 3 + (-1)^n)*(2*n + 3 - 3*(-1)^n)*(2*n + 15 + 5*(-1)^n)/ 384, {n, 0, 60}] (* _Michael De Vlieger_, Mar 31 2015 *)

%o (PARI) Vec(-x*(-1-x+x^2) / ( (1+x)^3*(x-1)^4 ) + O(x^80)) \\ _Michel Marcus_, Apr 01 2015

%Y Cf. A160791, A160792.

%K easy,nonn

%O 0,3

%A _Omar E. Pol_, May 29 2009

%E Edited by _Omar E. Pol_, Feb 08 2010