login
A160788
G.f.: (1+62*x+561*x^2+1014*x^3+449*x^4+48*x^5+x^6)/(1-x)^7.
1
1, 69, 1023, 6761, 28673, 92189, 245463, 570193, 1194577, 2308405, 4180287, 7177017, 11785073, 18634253, 28523447, 42448545, 61632481, 87557413, 121999039, 167063049, 225223713, 299364605, 392821463, 509427185, 653558961
OFFSET
0,2
COMMENTS
Source: the De Loera et al. article and the Haws website listed in A160747.
FORMULA
a(n) = 89*n^6/30 +151*n^5/15 +56*n^4/3 +19*n^3+371*n^2/30 +74*n/15 +1. - R. J. Mathar, Sep 11 2011
MATHEMATICA
CoefficientList[Series[(1 + 62*x + 561*x^2 + 1014*x^3 + 449*x^4 + 48*x^5 + x^6)/(1 - x)^7, {x, 0, 50}], x] (* G. C. Greubel, Apr 26 2018 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 69, 1023, 6761, 28673, 92189, 245463}, 30] (* Harvey P. Dale, Aug 03 2021 *)
PROG
(Magma) [89*n^6/30 +151*n^5/15 +56*n^4/3 +19*n^3+371*n^2/30 +74*n/15 +1: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
(PARI) x='x+O('x^30); Vec((1+62*x+561*x^2+1014*x^3+449*x^4+48*x^5 +x^6)/(1-x)^7) \\ G. C. Greubel, Apr 26 2018
CROSSREFS
Sequence in context: A259398 A093269 A108147 * A160815 A160816 A160817
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 18 2009
STATUS
approved