login
G.f.: (21+101*x+97*x^2+22*x^3+x^4)/(1-x)^5.
1

%I #11 Oct 19 2022 07:49:15

%S 21,206,917,2757,6571,13446,24711,41937,66937,101766,148721,210341,

%T 289407,388942,512211,662721,844221,1060702,1316397,1615781,1963571,

%U 2364726,2824447,3348177,3941601,4610646,5361481,6200517,7134407

%N G.f.: (21+101*x+97*x^2+22*x^3+x^4)/(1-x)^5.

%C Source: the De Loera et al. article and the Haws website listed in A160747.

%H G. C. Greubel, <a href="/A160769/b160769.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = 121*n^4/12 +40*n^3+869*n^2/12 +125*n/2 +21. - _R. J. Mathar_, Sep 11 2011

%t Table[(121*n^4 +480*n^3 +869*n^2 +750*n +252)/12, {n,0,30}] (* _G. C. Greubel_, Apr 26 2018 *)

%o (PARI) for(n=0,30, print1((121*n^4 +480*n^3 +869*n^2 +750*n +252)/12, ", ")) \\ _G. C. Greubel_, Apr 26 2018

%o (Magma) [(121*n^4 +480*n^3 +869*n^2 +750*n +252)/12: n in [0..30]]; // _G. C. Greubel_, Apr 26 2018

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_, Nov 18 2009