login
G.f.: (21+98*x+91*x^2+21*x^3+x^4)/(1-x)^5.
1

%I #11 Oct 21 2022 21:25:05

%S 21,203,896,2681,6371,13011,23878,40481,64561,98091,143276,202553,

%T 278591,374291,492786,637441,811853,1019851,1265496,1553081,1887131,

%U 2272403,2713886,3216801,3786601,4428971,5149828,5955321,6851831

%N G.f.: (21+98*x+91*x^2+21*x^3+x^4)/(1-x)^5.

%C Source: the De Loera et al. article and the Haws website listed in A160747.

%H G. C. Greubel, <a href="/A160768/b160768.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F a(n) = 29*n^4/3 +233*n^3/6 +214*n^2/3 +373*n/6 +21. - _R. J. Mathar_, Sep 11 2011

%t Table[(58*n^4 + 233*n^3 + 428*n^2 + 373*n + 126)/6, {n, 0, 50}] (* _G. C. Greubel_, Apr 26 2018 *)

%o (PARI) for(n=0,30, print1((58*n^4 + 233*n^3 + 428*n^2 + 373*n + 126)/6, ", ")) \\ _G. C. Greubel_, Apr 26 2018

%o (Magma) [(58*n^4 + 233*n^3 + 428*n^2 + 373*n + 126)/6: n in [0..30]]; // _G. C. Greubel_, Apr 26 2018

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_, Nov 18 2009