login
Triangle read by rows, binomial transform of an infinite lower triangular Toeplitz matrix with A078008 in every column.
2

%I #14 Oct 08 2021 16:11:51

%S 1,1,1,3,2,1,9,5,3,1,27,14,8,4,1,81,41,22,12,5,1,243,122,63,34,17,6,1,

%T 729,365,185,97,51,23,7,1,2187,1094,550,282,148,74,30,8,1,6561,3281,

%U 1644,832,430,222,104,38,9,1

%N Triangle read by rows, binomial transform of an infinite lower triangular Toeplitz matrix with A078008 in every column.

%C Row sums = A025192: (1, 2, 6, 18, 54, 162, 486, 1458,...).

%C A triangle formed like Pascal's triangle, but with 3^n for n>=0 on the left border instead of 1. - _Boris Putievskiy_, Aug 19 2013

%F A007318 * an infinite lower triangular Toeplitz matrix with A078008 in every column: (1, 0, 2, 2, 6, 10, 22, 42, 86,...).

%F Closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - _Boris Putievskiy_, Aug 19 2013

%e First few rows of the triangle =

%e 1;

%e 1, 1;

%e 3, 2, 1;

%e 9, 5, 3, 1;

%e 27, 14, 8, 4, 1;

%e 81, 41, 22, 12, 5, 1;

%e 243, 122, 63, 34, 17, 6, 1;

%e 729, 365, 185, 97, 51, 23, 7, 1;

%e 2187, 1094, 550, 282, 148, 74, 30, 8, 1;

%e 6561, 3281, 1644, 832, 430, 222, 104, 38, 9, 1;

%e ...

%Y Cf. A078008, A025192.

%K nonn,tabl

%O 0,4

%A _Gary W. Adamson_, May 25 2009

%E T(7,4) corrected by _Georg Fischer_, Oct 08 2021