login
A160743
8*P_7(n), 8 times the Legendre Polynomial of order 7 at n.
2
0, 8, 17593, 389112, 3169562, 15694600, 57385803, 170880248, 438565492, 1005601032, 2110507325, 4124403448, 7599974478, 13331249672, 22425272527, 36386743800, 57216718568, 87526438408, 130667379777, 190878599672, 273452459650, 384919809288, 533255710163
OFFSET
0,2
FORMULA
a(n) = n*(429*n^6 - 693*n^4 + 315*n^2 - 35)/2. - Vaclav Kotesovec, Jul 31 2013
From Colin Barker, Jul 23 2019: (Start)
G.f.: x*(8 + 17529*x + 248592*x^2 + 548822*x^3 + 248592*x^4 + 17529*x^5 + 8*x^6) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>7.
(End)
MAPLE
A160743 := proc(n)
8*orthopoly[P](7, n) ;
end proc: # R. J. Mathar, Oct 24 2011
MATHEMATICA
Table[8 LegendreP[7, n], {n, 0, 50}]
PROG
(PARI) a(n)=pollegendre(7, n)<<3 \\ Charles R Greathouse IV, Oct 24 2011
(PARI) concat(0, Vec(x*(8 + 17529*x + 248592*x^2 + 548822*x^3 + 248592*x^4 + 17529*x^5 + 8*x^6) / (1 - x)^8 + O(x^40))) \\ Colin Barker, Jul 23 2019
CROSSREFS
Sequence in context: A247975 A198404 A079597 * A079182 A079172 A173543
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2009
STATUS
approved