%I #6 Jan 02 2019 10:47:23
%S 1,1,1,3,1,3,18,3,3,18,192,18,9,18,192,3472,192,54,54,192,3472,104964,
%T 3472,576,324,576,3472,104964,5606272,104964,10416,3456,3456,10416,
%U 104964,5306272
%N Convolution triangle by rows, row sums = the Robbins sequence, A005130 starting with offset 1.
%C The terms are not integral in general, see A160707. - _Joerg Arndt_, Jan 02 2019
%C Row sums = the Robbins sequence A005130, starting with offset 1: (1, 2, 7, 42, 429,...).
%C Right and left borders = A160707, the convolution square root of A005130.
%F Let M = an infinite lower triangular Toeplitz matrix with A160707 in every column: (1, 1, 3, 18, 192, 5472,...); where A160707 = the convolution square root of the Robbins sequence: (1, 2, 7, 42, 429, 7436,...). Let Q = an infinite lower triangular matrix with (1, 1, 3, 18, 192,...) as the main diagonal and the rest zeros. Triangle A160708 = M * Q.
%e First few rows of the triangle =
%e 1;
%e 1, 1;
%e 3, 1, 3;
%e 18, 3, 3, 18;
%e 192, 18, 9, 18, 192;
%e 3472, 192, 54, 54, 192, 3472;
%e 104964, 3472, 576, 324, 576, 3472, 104964;
%e 5606272, 104964, 10416, 3456, 3456, 10416, 104964, 5306272;
%e ...
%e Example: row 5 = (192, 18, 9, 18, 192) = (192, 18, 3, 1, 1) * (1, 1, 3, 18, 192); where A005130(5) = 429 = (192 + 18 + 9 + 18 + 192).
%Y Cf. A005130, A160707
%K nonn,tabl,less
%O 1,4
%A _Gary W. Adamson_, May 24 2009