login
A160705
Hankel transform of A052702.
2
0, 0, 0, 0, 1, 1, -1, -4, -4, 5, 9, 9, -14, -16, -16, 30, 25, 25, -55, -36, -36, 91, 49, 49, -140, -64, -64, 204, 81, 81, -285, -100, -100, 385, 121, 121, -506, -144, -144, 650, 169, 169, -819, -196, -196, 1015, 225, 225, -1240, -256, -256
OFFSET
0,8
COMMENTS
a(n+5) is the Hankel transform of A052702(n+4).
LINKS
FORMULA
G.f.: x^4*(1-x)*(1+x+x^2)*(x^4+x^3-x^2+x+1)/( (1+x)^4*(x^2-x+1)^4 ).
a(n) = -4*a(n-3) -6*a(n-6) -4*a(n-9) -a(n-12).
MATHEMATICA
LinearRecurrence[{0, 0, -4, 0, 0, -6, 0, 0, -4, 0, 0, -1}, {0, 0, 0, 0, 1, 1, -1, -4, -4, 5, 9, 9}, 50] (* G. C. Greubel, May 02 2018 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0, 0, 0], Vec(x^4*(1-x)*(1+x+x^2)*(x^4+x^3-x^2+x+1)/( (1+x)^4*(x^2-x+1)^4 ))) \\ G. C. Greubel, May 02 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); [0, 0, 0, 0] cat Coefficients(R!(x^4*(1-x)*(1+x+x^2)*(x^4+x^3-x^2+x+1)/( (1+x)^4*(x^2-x+1)^4 ))); // G. C. Greubel, May 02 2018
CROSSREFS
Sequence in context: A214070 A096641 A155693 * A107851 A302337 A098821
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 24 2009
STATUS
approved