

A160689


a(1)=1. a(n) = the smallest positive integer such that d(a(n)) = d(Sum_{k=1..n} a(k)), where d(m) = the number of divisors of m.


5



1, 2, 2, 2, 8, 2, 2, 8, 2, 2, 8, 2, 2, 8, 2, 21, 5, 6, 6, 15, 3, 6, 8, 6, 2, 10, 12, 6, 12, 2, 10, 22, 8, 6, 34, 6, 6, 22, 8, 6, 8, 2, 2, 6, 8, 8, 2, 6, 15, 31, 6, 2, 6, 8, 6, 2, 2, 6, 10, 2, 6, 6, 15, 13, 6, 2, 6, 8, 2, 8, 6, 10, 6, 10, 8, 8, 6, 8, 6, 10, 8, 2, 2, 10, 2, 10, 6, 2, 38, 10, 6, 10, 8, 10, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Sum_{k=1..n} a(k) = A160690(n).
d(a(n)) = d(A160690(n)) = A160691(n).


LINKS

Michel Marcus, Table of n, a(n) for n = 1..5000


MATHEMATICA

a[1] = 1; a[n_] := a[n] = (s = Sum[a[k], {k, n1}]; For[m = 1, DivisorSigma[0, m] != DivisorSigma[0, s + m], m++]; m); Table[a[n], {n, 95}] (* Farideh Firoozbakht, May 28 2009 *)


PROG

(PARI) lista(nn) = {k = 1; print1(k, ", "); s = k; for (n=2, nn, k = 1; while(numdiv(k) != numdiv(k+s), k++); print1(k, ", "); s += k; ); } \\ Michel Marcus, Sep 04 2017


CROSSREFS

Cf. A160690, A160691.
Sequence in context: A087421 A309574 A132697 * A179976 A137508 A055921
Adjacent sequences: A160686 A160687 A160688 * A160690 A160691 A160692


KEYWORD

nonn


AUTHOR

Leroy Quet, May 24 2009


EXTENSIONS

More terms from Farideh Firoozbakht, May 28 2009


STATUS

approved



