login
A160528
Coefficients in the expansion of C^4/B^5, in Watson's notation of page 118.
6
1, 5, 20, 65, 190, 506, 1265, 2986, 6745, 14645, 30767, 62745, 124706, 242110, 460337, 858673, 1574140, 2839862, 5048435, 8852562, 15327290, 26224173, 44372688, 74301095, 123200079, 202394897, 329596348, 532299955, 852914900, 1356426196, 2141819621
OFFSET
0,2
LINKS
G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128.
FORMULA
See Maple code in A160525 for formula.
G.f.: Product_{n>=1} (1 - x^(7*n))^4/(1 - x^n)^5. - Seiichi Manyama, Nov 06 2016
a(n) ~ exp(Pi*sqrt(62*n/21)) * sqrt(31) / (4*sqrt(3) * 7^(5/2) * n). - Vaclav Kotesovec, Nov 10 2017
EXAMPLE
G.f. = 1 + 5*x + 20*x^2 + 65*x^3 + 190*x^4 + 506*x^5 + 1265*x^6 + ...
G.f. = q^23 + 5*q^47 + 20*q^71 + 65*q^95 + 190*q^119 + 506*q^143 + 1265*q^167 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))^4 /(1 - x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 13 2009
STATUS
approved