login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160475 First left hand column of the Zeta triangle A160474 1
-1, 51, -10594, 356487, -101141295, 48350824787, -2405967772180, 5296878246375849, -24680641353374049205, 12431632076904547636178, -34807634670487142385955264, 5037797143580320963623681605 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

LINKS

Table of n, a(n) for n=2..13.

MAPLE

nmax:=13; with(combinat): cfn1 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j=-k..k) end proc: Omega(0):=1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! end do: for n from 1 to nmax do d(n):= 2^(2*n-1)*Omega(n) end do: for n from 2 to nmax do Zc(n-1) := d(n-1)*2/((2*n-1)*(n-1)) end do: c(1) := denom(Zc(1)): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(n+1)*(2*n+3)/2, denom(Zc(n+1))); p(n+1) := c(n) end do: y(1) := Zc(1): for n from 1 to nmax-2 do y(n+1) := Zc(n+1)-((2*n+2)/(2*n+3))*y(n) end do: for n from 2 to nmax do ZETA(n, 1) := p(n)*y(n-1) end do: seq(ZETA(n, 1), n=2..nmax);

# edited, Johannes W. Meijer, Sep 20 2012

CROSSREFS

A160474 is the Zeta triangle.

Sequence in context: A208350 A232452 A206395 * A241332 A202886 A223059

Adjacent sequences:  A160472 A160473 A160474 * A160476 A160477 A160478

KEYWORD

easy,sign

AUTHOR

Johannes W. Meijer, May 24 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 11 23:53 EDT 2020. Contains 335654 sequences. (Running on oeis4.)