login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160406 Toothpick sequence starting at the vertex of an infinite 90-degree wedge. 32
0, 1, 2, 4, 6, 8, 10, 14, 18, 20, 22, 26, 30, 34, 40, 50, 58, 60, 62, 66, 70, 74, 80, 90, 98, 102, 108, 118, 128, 140, 160, 186, 202, 204, 206, 210, 214, 218, 224, 234, 242, 246, 252, 262, 272, 284, 304, 330, 346, 350, 356, 366, 376, 388, 408, 434, 452, 464, 484, 512, 542, 584 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Consider the wedge of the plane defined by points (x,y) with y >= |x|, with the initial toothpick extending from (0,0) to (0,2); then extend by the same rule as for A139250, always staying inside the wedge.

Number of toothpick in the structure after n rounds.

The toothpick sequence A139250 is the main entry for this sequence. See also A153000. First differences: A160407.

LINKS

Table of n, a(n) for n=0..61.

David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]

N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS

Omar Pol, Illustration of initial terms

FORMULA

A139250(n) = 2a(n) + 2a(n+1) - 4n - 1 for n > 0. - N. J. A. Sloane, May 25 2009

Let G = (x + 2*x^2 + 4*x^2*(1+x)*((Product_{k>=1} (1 + x^(2^k-1) + 2*x^(2^k))) - 1)/(1+2*x))/(1-x) (= g.f. for A139250); then the g.f. for the present sequence is (G + 2 + x*(5-x)/(1-x)^2)*x/(2*(1+x)). - N. J. A. Sloane, May 25 2009

MAPLE

G := (x + 2*x^2 + 4*x^2*(1+x)*(mul(1+x^(2^k-1)+2*x^(2^k), k=1..20)-1)/(1+2*x))/(1-x); P:=(G + 2 + x*(5-x)/(1-x)^2)*x/(2*(1+x)); series(P, x, 200); seriestolist(%); # N. J. A. Sloane, May 25 2009

MATHEMATICA

terms = 62;

G = (x + 2x^2 + 4x^2 (1+x)(Product[1+x^(2^k-1) + 2x^(2^k), {k, 1, Ceiling[ Log[2, terms]]}]-1)/(1+2x))/(1-x);

P = (G + 2 + x(5-x)/(1-x)^2) x/(2(1+x));

CoefficientList[P + O[x]^terms, x] (* Jean-Fran├žois Alcover, Nov 03 2018, from Maple *)

CROSSREFS

Cf. A139250, A139251, A153000, A153006, A152980, A160407, A160408, A160409.

Cf. A170886-A170895.

Sequence in context: A191146 A220850 A151566 * A113293 A080431 A288732

Adjacent sequences:  A160403 A160404 A160405 * A160407 A160408 A160409

KEYWORD

nonn

AUTHOR

Omar E. Pol, May 23 2009

EXTENSIONS

More terms from N. J. A. Sloane, May 25 2009

Definition revised by N. J. A. Sloane, Jan 02 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 17 00:41 EST 2018. Contains 318191 sequences. (Running on oeis4.)