|
|
A160344
|
|
Numerator of Hermite(n, 26/31).
|
|
1
|
|
|
1, 52, 782, -159224, -12788660, 559103792, 151972419784, 1454980899424, -1968977929003888, -124758638617745600, 27571931007786483424, 3831601446637967570048, -383682490141447518907712, -108323545252613355018788096, 3953866345538313246451111040
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 0..369
|
|
FORMULA
|
From G. C. Greubel, Jul 12 2018: (Start)
a(n) = 31^n * Hermite(n, 26/31).
E.g.f.: exp(52*x - 961*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(52/31)^(n-2*k)/(k!*(n-2*k)!)). (End)
|
|
EXAMPLE
|
Numerators of 1, 52/31, 782/961, -159224/29791, -12788660/923521, ...
|
|
MATHEMATICA
|
Numerator[HermiteH[Range[0, 20], 26/31]] (* Harvey P. Dale, Jan 26 2016 *)
Table[31^n*HermiteH[n, 26/31], {n, 0, 30}] (* G. C. Greubel, Jul 12 2018 *)
|
|
PROG
|
(PARI) a(n)=numerator(polhermite(n, 26/31)) \\ Charles R Greathouse IV, Jan 29 2016
(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(52/31)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 12 2018
|
|
CROSSREFS
|
Cf. A009975 (denominators).
Sequence in context: A215365 A339142 A264309 * A163691 A007247 A232312
Adjacent sequences: A160341 A160342 A160343 * A160345 A160346 A160347
|
|
KEYWORD
|
sign,frac
|
|
AUTHOR
|
N. J. A. Sloane, Nov 12 2009
|
|
STATUS
|
approved
|
|
|
|