%I #21 May 20 2024 16:46:30
%S 1,105,385,1365,1785,2805,3135,6545,10465,11305,17255,20615,26565,
%T 40755,106743,171717,255255,279565,327845,707455,886445,983535,
%U 1181895,1752465,3949491,8070699,10163195,13441645,15069565,30489585,37495115,40324935
%N Indices of records in heights of cyclotomic polynomials (A160338).
%C m is in this sequence if A160338(k) < A160338(m) for all k<m.
%H Max Alekseyev, <a href="/A160340/b160340.txt">Table of n, a(n) for n = 1..42</a>
%H John Abbott and Nico Mexis, <a href="https://arxiv.org/abs/2403.08751">Cyclotomic Factors and LRS-Degeneracy</a>, arXiv:2403.08751 [math.AC], 2024. See p. 12.
%H Andrew Arnold and Michael Monagan, <a href="https://www.cecm.sfu.ca/CAG/papers/andrewCyclo.pdf">Calculating cyclotomic polynomials of very large height</a>.
%H Lola Thompson, <a href="http://www.lolathompson.com/uploads/1/1/0/6/110629329/cyclotomic_survey_final.pdf">Cyclotomic statistics</a>, Univ. Utrecht (Netherlands, 2024). See pp. 6, 14.
%t r = 0; Do[If[# > r, r = #; Print[n]] &@ Max@ Abs@ CoefficientList[Cyclotomic[n, x], x], {n, 10^4}] (* _Michael De Vlieger_, May 20 2024 *)
%o (PARI) print1(r=1); for(n=2,1e4, t=vecmax(abs(Vec(polcyclo(n)))); if(t>r, r=t; print1(", "n))) \\ _Charles R Greathouse IV_, Jun 28 2012
%Y Subsequence of A013594 and A046887.
%Y See also A013595, A262404, A262405, A278567.
%K nonn
%O 1,2
%A _Max Alekseyev_, May 13 2009