login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160338 Height (maximum absolute value of coefficients) of the n-th cyclotomic polynomial. 5
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,105

COMMENTS

Different from A137979: first time these sequence disagree is at n=14235 with a(14235)=2 and A137979(14235)=3.

LINKS

Max Alekseyev, Table of n, a(n) for n = 1..100000

H. Maier, The coefficients of cyclotomic polynomials, Analytic number theory, Vol. 2 (1995), pp. 633-639, Progr. Math., 139.

Lola Thompson, Heights of divisors of x^n-1, arXiv:1111.5404 [math.NT], 2011.

R. C. Vaughan, Bounds for the coefficients of cyclotomic polynomials, Michigan Math. J. 21 (1974), 289-295 (1975).

EXAMPLE

a(4) = 1 because the 4th cyclotomic polynomial x^2 + 1 has height 1.

MATHEMATICA

Table[Max@Abs@CoefficientList[Cyclotomic[n, x], x], {n, 1, 105}] (* from Jean-Fran├žois Alcover, Apr 02 2011 *)

PROG

(PARI) a(n) = vecmax(abs(Vec(polcyclo(n))))

CROSSREFS

Cf. A160339 (records), A160340 (indices of records), A160341.

Sequence in context: A216579 A229878 A235145 A266342 A037281 A143241 A258825

Adjacent sequences:  A160335 A160336 A160337 * A160339 A160340 A160341

KEYWORD

nonn,nice

AUTHOR

Max Alekseyev, May 13 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 01:14 EST 2016. Contains 278902 sequences.