login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160338 Height (maximum absolute value of coefficients) of the n-th cyclotomic polynomial. 5
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,105

COMMENTS

Different from A137979: first time these sequence disagree is at n=14235 with a(14235)=2 and A137979(14235)=3.

REFERENCES

H. Maier, "The size of the coefficients of cyclotomic polynomials", Analytic number theory, Vol. 2 (1995), pp. 633-639, Progr. Math., 139.

R. C. Vaughan, "Bounds for the coefficients of cyclotomic polynomials", Michigan Math. J. 21 (1974), pp. 289-295.

LINKS

Max Alekseyev, Table of n, a(n) for n = 1..100000

Lola Thompson, Heights of divisors of x^n-1 (2011).

EXAMPLE

a(4) = 1 because the 4-th cyclotomic polynomial x^2 + 1 has height 1.

MATHEMATICA

Table[Max@Abs@CoefficientList[Cyclotomic[n, x], x], {n, 1, 105}] (* from Jean-Fran├žois Alcover, Apr 02 2011 *)

PROG

(PARI) a(n) = vecmax(abs(Vec(polcyclo(n))))

CROSSREFS

Cf. A160339 (records), A160340 (indices of records), A160341.

Sequence in context: A137979 * A229878 A235145 A037281 A143241 A118626

Adjacent sequences:  A160335 A160336 A160337 * A160339 A160340 A160341

KEYWORD

nonn,nice

AUTHOR

Max Alekseyev, May 13 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 17 12:15 EDT 2014. Contains 240635 sequences.