login
Numerator of Hermite(n, 24/29).
1

%I #13 Sep 08 2022 08:45:45

%S 1,48,622,-131616,-9456180,431615808,100244032584,455846829696,

%T -1158392591818608,-61736719347682560,14572384526261325024,

%U 1737886076688564260352,-186199726823835951097152,-44015079459426106683608064,1958719412677543785877138560

%N Numerator of Hermite(n, 24/29).

%H G. C. Greubel, <a href="/A160286/b160286.txt">Table of n, a(n) for n = 0..371</a>

%F From _G. C. Greubel_, Oct 03 2018: (Start)

%F a(n) = 29^n * Hermite(n, 24/29).

%F E.g.f.: exp(48*x - 841*x^2).

%F a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(48/29)^(n-2*k)/(k!*(n-2*k)!)). (End)

%e Numerators of 1, 48/29, 622/841, -131616/24389, -9456180/707281, ...

%t Table[29^n*HermiteH[n, 24/29], {n, 0, 30}] (* _G. C. Greubel_, Oct 03 2018 *)

%o (PARI) a(n)=numerator(polhermite(n, 24/29)) \\ _Charles R Greathouse IV_, Jan 29 2016

%o (PARI) x='x+O('x^30); Vec(serlaplace(exp(48*x - 841*x^2))) \\ _G. C. Greubel_, Oct 03 2018

%o (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(48/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Oct 03 2018

%Y Cf. A009973 (denominators).

%K sign,frac

%O 0,2

%A _N. J. A. Sloane_, Nov 12 2009