OFFSET
1,1
COMMENTS
Conjecture. For every n>=1, there exists a finite value of a(n). It is easy to see that this conjecture is equivalent to the well known Collatz 3n+1 conjecture.
LINKS
MAPLE
A006519 := proc(n) local i ; for i in ifactors(n)[2] do if op(1, i) = 2 then return op(1, i)^op(2, i) ; fi ; od: return 1 ; end proc:
f := proc(twon1) local threen2 ; threen2 := 3*twon1/2+1/2 ; threen2/A006519(threen2) ; end proc:
A160266 := proc(n) local ref, k, fk ; ref := A006694(n) ; k := 1 ; fk := f(2*n+1) ; while true do if A006694( (fk-1)/2 ) < ref then return k; end if; fk := f(fk) ; k := k+1 ; end do ; end proc:
seq(A160266(n), n=1..120) ; # R. J. Mathar, Feb 02 2010
MATHEMATICA
A006519[n_] := Do[If[fi[[1]] == 2, Return[2^fi[[2]]], Return[1]], {fi, FactorInteger[n]}];
f[n_] := With[{n2 = 3 n/2 + 1/2}, n2/A006519[n2]];
A006694[n_] := Sum[EulerPhi[d]/MultiplicativeOrder[2, d], {d, Divisors[2n + 1]}] - 1;
a[n_] := Module[{ref, k, fk}, ref = A006694[n]; k = 1; fk = f[2n + 1]; While[True, If[A006694[(fk - 1)/2] < ref, Return[k]]; fk = f[fk]; k++]];
Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Aug 28 2024, after R. J. Mathar *)
PROG
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Vladimir Shevelev, May 07 2009
EXTENSIONS
More terms from R. J. Mathar, Feb 02 2010
STATUS
approved