login
A160263
Numerator of Hermite(n, 14/29).
1
1, 28, -898, -119336, 1189900, 836209808, 13406815624, -8063638544864, -383633726413168, 97762575920121280, 8544799476205933024, -1405112141642673804928, -197439019874757039348032, 22832490910422530976921856, 4956511354073268289737879680
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Sep 26 2018: (Start)
a(n) = 29^n * Hermite(n, 14/29).
E.g.f.: exp(28*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(28/29)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 28/29, -898/841, -119336/24389, 1189900/707281, ...
MAPLE
seq(coeff(series(factorial(n)*exp(28*x-841*x^2), x, n+1), x, n), n = 0..15); # Muniru A Asiru, Sep 28 2018
MATHEMATICA
Table[29^n*HermiteH[n, 14/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 14/29)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(28*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(28/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
CROSSREFS
Cf. A009973 (denominators).
Sequence in context: A278195 A095656 A057412 * A129461 A239336 A203135
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved