This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A160254 Expansion of x*(2 - 3*x + x^2 - 4*x^3 + 3*x^4 - 2*x^5 + x*(1 - x - x^3)*sqrt((1 + 2*x)/(1 - 2*x)))/(2*(1 - 3*x + 3*x^2 - 3*x^3 + 4*x^4 - 3*x^5 + 2*x^6)). 1

%I

%S 1,2,4,7,13,24,44,81,151,280,525,984,1859,3511,6682,12709,24334,46565,

%T 89626,172381,333262,643733,1249147,2421592,4713715,9165792,17888456,

%U 34873456,68212220,133269997,261167821,511211652,1003436520,1967293902

%N Expansion of x*(2 - 3*x + x^2 - 4*x^3 + 3*x^4 - 2*x^5 + x*(1 - x - x^3)*sqrt((1 + 2*x)/(1 - 2*x)))/(2*(1 - 3*x + 3*x^2 - 3*x^3 + 4*x^4 - 3*x^5 + 2*x^6)).

%C a(n) is the number of nodes at level n in certain generating tree, denoted C, that embeds the tree of numerical semigroups.

%C Elizalde (2009) established that the number A007323(n) of numerical semigroups of genus n is bounded in C as follows: A000045(n+2) - 1 <= A007323(n) <= a(n) <= 1 + 3*2^(n - 3).

%H Matthew House, <a href="/A160254/b160254.txt">Table of n, a(n) for n = 1..3328</a>

%H Sergi Elizalde, <a href="https://arxiv.org/abs/0905.0489">Improved bounds on the number of numerical semigroups of a given genus</a>, arXiv:0905.0489 [math.CO], May 4, 2009. See Table 1, p. 8.

%o (Maxima) gf : taylor(x*(2 - 3*x + x^2 - 4*x^3 + 3*x^4 - 2*x^5 + x*(1 - x - x^3)*sqrt((1 + 2*x)/(1 - 2*x)))/(2*(1 - 3*x + 3*x^2 - 3*x^3 + 4*x^4 - 3*x^5 + 2*x^6)), x, 0, 100)\$

%o makelist(ratcoef(gf, x, n), n, 1, 100); /* _Franck Maminirina Ramaharo_, Jan 15 2019 */

%Y Cf. A000045, A007323.

%K nonn,easy

%O 1,2

%A _Jonathan Vos Post_, May 06 2009

%E Edited, and name replaced by the g.f. by _Franck Maminirina Ramaharo_, Jan 15 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 22:42 EST 2019. Contains 329987 sequences. (Running on oeis4.)