

A160248


Table read by antidiagonals of "less regular" truncated tetrahedron numbers built of facecenteredcubic sphere packing.


0



1, 6, 4, 19, 16, 10, 44, 40, 31, 20, 85, 80, 68, 52, 35, 146, 140, 125, 104, 80, 56, 231, 224, 206, 180, 149, 116, 84, 344, 336, 315, 284, 246, 204, 161, 120, 489, 480, 456, 420, 375, 324, 270, 216, 165
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

These also contain 3 existing sequences:
1: Regular octahedra (A005900) on the xaxis, which represents the increasing edge at truncation.
2: Regular tetrahedra (essentially A000292) on the yaxis, which represents the increasing remaining original edge.
3: Regular truncated tetrahedra (A005906) on the diagonal, which represents values where the newly formed edge and the remaining portion of the original tetrahedron edge are of equal length.


REFERENCES

Main Title: Polyhedra primer / Peter Pearce and Susan Pearce. Published/Created: New York : Van Nostrand Reinhold, c1978. Description: viii, 134 p. : ill. ; 24 cm. ISBN: 0442264968
Main Title: The book of numbers / John H. Conway, Richard K. Guy. Published/Created: New York, NY : Copernicus c1996. Description: ix, 310 p. : ill. (some col.) ; 24 cm. ISBN: 038797993X


LINKS

Table of n, a(n) for n=1..45.


FORMULA

v=(y^3+4*x^3+6*y^2*x+12*y*x^23*y^212*x^212*y*x+2*y+8*x)/6


PROG

(Excel) Paste the following formula into cell C3, and fill down and right to desired table size. All volumes 10, 000 and under are covered by column AA and row 41.
=((ROW()2)^3+4*(COLUMN()2)^3+6*(ROW()2)^2*(COLUMN()2)+12*(ROW()2)*(COLUMN()2)^23*(ROW()2)^212*(COLUMN()2)^212*(ROW()2)*(COLUMN()2)+2*(ROW()2)+8*(COLUMN()2))/6


CROSSREFS

Sequence in context: A171089 A180495 A213761 * A317858 A212891 A107983
Adjacent sequences: A160245 A160246 A160247 * A160249 A160250 A160251


KEYWORD

easy,nonn,tabl


AUTHOR

Chris G. SpiesRusk (chaosorder4(AT)gmail.com), May 05 2009, May 11 2009


EXTENSIONS

Improvement of the definition's precision by Chris G. SpiesRusk (chaosorder4(AT)gmail.com), May 19 2009


STATUS

approved



