login
A160247
Table read by antidiagonals of "less regular type 1" truncated octahedron numbers built from face-centered-cubic sphere packing.
0
1, 13, 6, 55, 38, 19, 147, 116, 79, 44, 309, 260, 201, 140, 85, 561, 490, 405, 314, 225, 146, 923, 826, 711, 586, 459, 338, 231, 1415, 1288, 1139, 976, 807, 640, 483, 344
OFFSET
1,2
COMMENTS
The sequence contains regular cuboctahedra (A005902) on the x-axis, regular octahedra (A005900) on the y-axis, and regular truncated octahedra (A005910) on the diagonal. As for the rest, they each have 6 squares of the same area, while the 8 hexagons (of another same area) have 2 side lengths which alternate.
The x-axis represents an increasing degree of truncation, while the y-axis represents an increasing quantity of units on the remaining original octahedron edge.
REFERENCES
Main Title: Polyhedra primer / Peter Pearce and Susan Pearce. Published/Created: New York : Van Nostrand Reinhold, c1978. Description: viii, 134 p. : ill. ; 24 cm. ISBN: 0442264968
Main Title: The book of numbers / John H. Conway, Richard K. Guy. Published/Created: New York, NY : Copernicus c1996. Description: ix, 310 p. : ill. (some col.) ; 24 cm. ISBN: 038797993X
FORMULA
v=(2*y^3+10*x^3+12*y^2x+24*Y*x^2-12*y^2-39*x^2-48*y*x+25*y+47*x-18)/3
PROG
(Excel) Paste the following formula into cell C3, and fill down and right to desired table size. All volumes 10, 000 and under are covered by column Q and row 27.
=(2*(ROW()-2)^3+10*(COLUMN()-2)^3+12*(ROW()-2)^2*(COLUMN()-2)+24*(ROW()-2)*(COLUMN()-2)^2-12*(ROW()-2)^2-39*(COLUMN()-2)^2-48*(ROW()-2)*(COLUMN()-2)+25*(ROW()-2)+47*(COLUMN()-2)-18)/3
CROSSREFS
Sequence in context: A220131 A268723 A300942 * A300886 A301496 A078438
KEYWORD
easy,nonn,tabl
AUTHOR
Chris G. Spies-Rusk (chaosorder4(AT)gmail.com), May 05 2009, May 19 2009
STATUS
approved