

A160245


a(n) = index of the nth prime in A051301 (least prime factor of m!+1)


0



2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 3, 2, 2, 6, 1, 3, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 4, 1, 2, 1, 1, 3, 3, 2, 2, 3, 1, 1, 1, 5, 3, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 4, 2, 2, 5, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 3, 3, 3, 1, 2, 1, 3, 1, 1, 2, 1, 1, 2, 4, 2, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Because of Wilson's theorem A051301(p1)=p for every prime p. Hence a(n)>0, and since A051301(k)>k, a(n) is actually finite.
The first 18 values of the sequence were calculated with Maple. The others were derived from T. D. Noe's bfile for b051301.txt.


LINKS

Table of n, a(n) for n=1..105.


EXAMPLE

a(17)=3 because A051301(15)=A051301(43)=A051301(58)=59, and there are no other occurrences of 59=17th prime number in A051301.


MAPLE

a:=proc(n) option remember; local k, l, p: p:=ithprime(n): l:=0: for k from 0 to p2 do if A051301(k)=p then l:=l+1; fi; od; l+1; end;


MATHEMATICA

prev={}; Table[p=Prime[n]; s=Select[Complement[Range[0, p1], prev], Mod[ #!+1, p]==0&]; prev=Union[s, prev]; Length[s], {n, 100}] [From T. D. Noe, May 12 2009]


CROSSREFS

Cf. A051301, A115092.
Sequence in context: A046219 A088978 A276948 * A154351 A112753 A281007
Adjacent sequences: A160242 A160243 A160244 * A160246 A160247 A160248


KEYWORD

nonn


AUTHOR

Frederick Magata (frederick.magata(AT)web.de), May 05 2009


EXTENSIONS

Extended by T. D. Noe, May 12 2009


STATUS

approved



