login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160245 a(n) = index of the n-th prime in A051301 (least prime factor of m!+1) 0
2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 3, 2, 2, 6, 1, 3, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 4, 1, 2, 1, 1, 3, 3, 2, 2, 3, 1, 1, 1, 5, 3, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 4, 2, 2, 5, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 3, 3, 3, 1, 2, 1, 3, 1, 1, 2, 1, 1, 2, 4, 2, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Because of Wilson's theorem A051301(p-1)=p for every prime p. Hence a(n)>0, and since A051301(k)>k, a(n) is actually finite.

The first 18 values of the sequence were calculated with Maple. The others were derived from T. D. Noe's b-file for b051301.txt.

LINKS

Table of n, a(n) for n=1..105.

EXAMPLE

a(17)=3 because A051301(15)=A051301(43)=A051301(58)=59, and there are no other occurrences of 59=17th prime number in A051301.

MAPLE

a:=proc(n) option remember; local k, l, p: p:=ithprime(n): l:=0: for k from 0 to p-2 do if A051301(k)=p then l:=l+1; fi; od; l+1; end;

MATHEMATICA

prev={}; Table[p=Prime[n]; s=Select[Complement[Range[0, p-1], prev], Mod[ #!+1, p]==0&]; prev=Union[s, prev]; Length[s], {n, 100}] [From T. D. Noe, May 12 2009]

CROSSREFS

Cf. A051301, A115092.

Sequence in context: A046219 A088978 A276948 * A154351 A112753 A281007

Adjacent sequences:  A160242 A160243 A160244 * A160246 A160247 A160248

KEYWORD

nonn

AUTHOR

Frederick Magata (frederick.magata(AT)web.de), May 05 2009

EXTENSIONS

Extended by T. D. Noe, May 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 22 11:46 EDT 2019. Contains 322330 sequences. (Running on oeis4.)